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Introduction and Overview 
 
These notes have been prepared (and revised, re-revised, etc.) over the past decades while 
working through various problems encountered in our crystallographic analyses. They are not 
intended as a complete and systematic development of crystallography, but rather they reflect 
topics or problems of interest to me or that were particularly challenging that I needed to work 
through to better understand. This effort reflects the “learn-by-doing” approach that I have found 
to be valuable when I am trying to master new material. 
 
The inspiration for this compendium is Charles Kittel’s Elementary Statistical Physics (Dover, 
2004, originally published in 1958) that is organized around 45 sections, each a few pages in 
length, that cover a set of important topics in this field.  By comparison, the present effort makes 
no attempt (yet) to develop the material in a systematic way, either in the flow of topics, the 
depth of treatment, or even (alas) using a consistent set of symbols.  I hope to be able to correct 
these defects at some time in the future. At the same time, there are always new topics to 
incorporate (as I learned from my time in Student Affairs “there is always more to learn”) and 
the evolution of this collection will undoubtedly reflect the tension between clarifying (and 
correcting) existing material and tackling new subjects.   
 
I would like to take this opportunity to acknowledge the incredible effort of the graduate 
students, postdoctoral fellows, staff and visitors in my research group who have provided the 
inspiration and motivation for this work – it’s been a blast!  Thank you. 
 
Douglas C. Rees 
26 November 2024 
dcrees@caltech.edu 
 
NOTE:  Since my proofreading and error correction skills are “imperfect”, be aware that 
mistakes remain. If a derivation or equation doesn’t make sense, don’t exclude the possibility 
that it is because of errors in the text or equations. 
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Section I:  Fourier Transformations, Structure Factors and Electron Density 
Useful Properties of Fourier Transforms  
(see pp 50-51 of Titchmarsh) 
 
Convolution Theorem 
 
 If the Fourier transforms of two functions g(x) and f(x) are given by G(h) and F(h), then: 
 

 

ie the Fourier transform of the product of two functions is the convolution of the Fourier transforms 
of the two functions, and vice-versa.    This result relates the Fourier transform of a crystal to the 
Fourier transforms of the molecule and the lattice, for example. 
 
Parseval's Theorem: 
 

  

This relationship is useful for calculating the mean square density over the entire unit cell from the 
structure factor amplitudes. 
   
 Generalizations to multiple functions are also possible; an extension to  is given by: 
 

 

 To maximize this expression, the value of the second summation should be proportional to F(h): 
 

 

since then the overall integral is given approximately by: 
 

 

The relationship between Sayre's equation (Acta Crystallogr. 5, 60-65 (1952)) and the 
maximization of r3 has been noted by E. Stanley (Acta Crystallogr. A35, 966-970 (1979)).  
Another way in which maximization of r3 may be accomplished is if all the structure factors have 
a phase angle of 0˚; this corresponds to the Patterson solution (superatom at the origin) which does 
satisfy all these relationships, but which is (almost always, anyways) not the desired solution. 
 
  

g(x) f (x)e2π ihx∫ dx = G(k)F(h− k)
k
∑

f (x)
2

∫ dx = F(h)
h
∑ 2

ρ3(x)

ρ3(x)∫ dx = F(h)F( p)F(q)e−2π i(h+ p+q)x
q
∑

p
∑

h
∑∫ dx

= F(h)F( p)F(q)
hpq
∑ δ (h+ p + q)

= F(−h) F( p)F(h− p)
p
∑

h
∑

F(h) ≈ F( p)F(h− p)
p
∑

ρ3(x)∫ dx ≈ F(−h)F(h)
h
∑ = I(h)

h
∑
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Sampling Theory with Applications to Molecular Replacement and NCS Averaging 
 
 The molecular and crystal transforms of an object are given by: 
 
 

 

 
The crystal transform is given by the molecular transform sampled at reciprocal lattice points 
(convolution theorem). 
 
 By the inverse Fourier transform: 
 

 

 
This sampling theorem permits reconstruction of the continuous molecular transform from the 
discrete, sampled crystal transform. 
 

 Now, for integer n, , so that when S equals an integer h, F(S) = F(h), and the 

value of this amplitude is independent of all other F(h)'s.   
 
 The exact form of the sampling theorem depends on the precise limits used in the 
integration. If instead of -1/2 < x < 1/2, the limits 0 < x < 1 are used, then : 
 

 

This reflects the different molecular transforms of the following objects, although they have the 
exact same crystal transform: 
 

F(S) = ρ(x)e2π iSx

−1/2

1/2

∫ dx

F(h) = ρ(x)e2π ihx

−1/2

1/2

∫ dx; h = integer

ρ(x) = F(h)e−2π ihx

h
∑   (neglecting the volume factor)

F(S) = F(h)e−2π ihx

h
∑

−1/2

1/2

∫ e2π iSxdx

= F(h)
h
∑ e2π i(S−h)

−1/2

1/2

∫ dx

= F(h)
h
∑ sinπ (S − h)

π (S − h)

sinπn
πn

= δ (n)

F(S) = F(h)
h
∑ sinπ (S − h)

π (S − h)
eπ i(S−h)⎡⎣ ⎤⎦
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 The term in brackets is related to the phase shift of the diffraction pattern associated with a real 
space translation. 
 
Application of the Sampling Theorem to the Rotation Function: 
 
 The Patterson functions of two crystals (possibly corresponding to the same crystal) are 
given by the expressions: 
 

 

 
define the rotation function R (Rossmann and Blow, Acta Crystallogr. 15, 24 (1962))  

 

0 1 2-1

0 1

0 1

P1(x) = Fh
2
e−2π ihx

h
∑  

P2( y) = Fp
2
e−2π ipy

p
∑

if  y = Cx, where C is a rotation matrix, then

P2(Cx) = Fp
2
e−2π ipCx

p
∑

R(C) = P1
U
∫ (x)P2(Cx)dx

= Fh
2

p
∑

h
∑ Fp

2
e−2π i(h+ pC )x

U
∫ dx

≡ Fh
2

p
∑

h
∑ Fp

2
Ghp
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Ghp is the sampling or interference function, and has a value near 0 unless h ~ -Cp.  Ghp interpolates 
the value of the diffraction pattern corresponding to a non-integral -pC point. 
 
 With H  º pC+h, Ghp may be derived for a sphere of radius R (using a coordinate system 
where H is along the  unique axis, f is the angle between r and H, and q is the angle in the equatorial 
plane: 

 

And for a one dimensional box with |x| < a/2, Ghp is given by: 
 

 

 
Applications to Noncrystallographic Symmetry and Solvent Flattening: 

 

In this case, other F(h)'s contribute to F(p) in addition to the term p=h.  For example, when a=1/2, 
then for |p-h| = 0, 1, 2, 3, etc., the sinx/x term has the value 0.5, 0.319, 0, -0.106, etc., compared to 
the values 1, 0, 0, 0, ... when a =1.  This interdependence of the structure factors permits the 
estimation and refinement of phase information, which is beautifully detailed in papers based on 
Crowther's thesis work  (Acta Crystallogr. 22, 758-764 (1967); Acta Crystallogr. B25, 2571-2580 
(1969)), and by P. Main and M.G. Rossmann   (Acta Cryst. 21, 67-72 (1966))  

Ghp =
1

4
3
πR3

e−2π iHr cosϕr 2 sinφ dr
0

R

∫
0

π

∫
0

2π

∫ dϕdϑ

=
3 sin(2πHR)− (2πHR)cos(2πHR)⎡⎣ ⎤⎦

(2πHR)3

Ghp =
1
a

e−2π ihx
−a/2

a/2

∫ dx

= sinπHa
πHa

F(S) = ρ(x)e2π iSx

−1/2

1/2

∫ dx

if ρ(x) = 0 when 
a
2
< x < 1

2

= ρ(x)e2π iSx

−a/2

a/2

∫ dx

F(S) = F(h)
h
∑ ρ(x)e2π i(S−h)x

−a/2

a/2

∫ dx

= F(h)
h
∑ sinπ (S − h)a

π (S − h)
for integer S ≡ p

F( p) = F(h)
h
∑ sinπ ( p − h)a

π ( p − h)
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Electron Atomic Scattering Factors and the Relationship to X-ray Atomic Scattering Factors 
 
references  
International Tables, vol III (1968) pp 217-227 
International Tables, vol C (1992) pp 223-225 plus following tables 
L.M. Peng Micron 30, 625-648 (1999) 
 
The electron atomic scattering factor and the Mott equation 
We will describe scattering in terms of the two related reciprocal space quantities S and s defined 
as 

Eq. 1      

 
where  is half the scattering angle.  Some papers use 2pS or 4ps – so beware when comparing 
different formulas! 
 
The electron atomic scattering factor describing the elastic scattering of a beam of electrons is 
given by the Fourier transform of the electrostatic Coulomb potential V(r) of the atom 

Eq. 2      

where mo is the rest mass of the electron and e is the magnitude of the electron charge. 
 
For comparison, the X-ray atomic scattering factor describing the elastic scattering of a beam of 
X-rays is given by the Fourier transform of the electron density  of the atom:    
Eq. 3      

For an atom with an atomic number Z and an electron density distribution , the Coulomb 
electrostatic potential of an atom is given by  

Eq. 4      

where the two terms on the right-hand side reflect the electrostatic potential due to the positive 
nucleus (a point charge) and the negative electron distribution, respectively. 
 
The Fourier transform of the Coulomb electrostatic potential (Eq. 4, see the Peng reference) gives 
the Mott equation relating the atomic scattering factors of electrons and X-rays: 

Eq 5a     

Note that this expression is defined in terms of the scattering parameter s (not S). 
 
 
 

S = 1
d
= 2sinϑ

λ

s = S
2
= 1
2d

= sinϑ
λ

ϑ

fe S( ) = 2πm0e
h2

V r( )∫ e2π ir⋅Sdr

ρ r( )
fx S( ) = ρ r( )e2π ir⋅S dr∫

ρ r( )

V r( ) = 1
4πε0

Ze
r
−

eρ ′r( )
r − ′r

d ′r∫
⎧
⎨
⎩

⎫
⎬
⎭

fe s( ) = m0e
2

8πε0h
2

Z − fx s( )⎡⎣ ⎤⎦
s2
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Dimensional analysis 
Analysis of the units for these equations is most straightforward using SI units. 
The various parameters are 
m = 9.1094 x 10-31 kg 
h = 6.6261 x 10-34 J s 
q = 1.6022 x 10-19 C 
4peo = 1.1126 x 10-10 C V-1 m-1  (or C2 N-1 m-2) 
1 J = 1 V x 1 C 
and the units of J and N are kg m2 s-2 and kg m s-2, respectively. 
 

From equation 2, we have   

Using the SI system, the units of the Fourier transform of V(r) are V m3, while the constants can 
be shown to have units V-1 m-2, so that the electron atomic scattering factor has units of m.  Instead 
of m, however, Å units are conventionally used; the Mott equation then has the numerical form: 

Eq. 5b     

where Z and  are in electrons, s in Å-1 and  in Å.    Although the unit of the electron 
atomic scattering factor is distance, it should be possible to convert them to correspond directly to 
the Fourier transform of the electrostatic potential (V). 
 
Limit as s à 0 
It may appear from the Mott equation that  has a singularity as , but since , 
the convergence limit is not immediately obvious.  If the X-ray atomic scattering factor is 
approximated as a Gaussian 
Eq. 6a      
then in the limit of , Eq. 5b reduces to  
Eq. 6b        
which predicts that the electron scattering factors are proportional to Z at low scattering angle, as 
are the X-ray scattering factors.  Although the X-ray scattering factors are not generally 
approximated as single Gaussians, their parameterizations do utilize multiple Gaussians. 
 
However, the 1968 International Tables states (pg 217) that the electron scattering factors are 
proportional to Z1/2 (and “This is exact for the Thomas-Fermi statistical model”(no reference is 
given for this statement, however)).  One consequence of a smaller dependence of the electron 
scattering factors on Z is that “other factors being equal, the detection of light atoms in the presence 
of heavy atoms is easier with electrons than X-rays” (Ibers, Acta Cryst. 14, 540 (1961); Ibers 
received his PhD in Chemistry at Caltech for his thesis “Studies in Electron and X-ray Diffraction” 
(1954)) 
 
 
 
 

fe S( ) = 2πm0e
h2

V r( )∫ e2π ir⋅Sdr

fe s( ) = 0.023934 Z − fx s( )⎡⎣ ⎤⎦
s2

Å

fx s( ) fe s( )

fe s( ) s→ 0 fx s( )→ Z

fx s( ) = Ze−B0s2
s→ 0

fe
(0) s( ) ~ 0.024B0Z
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Charged species (ions) 
For neutral ions, the electron scattering factor is a well-defined function (ie. no singularity at s = 
0), as captured by the Mott equation (Eq. 5).  If the number of protons is not equal to the number 
of electrons, however, then there is a singularity (at least numerically), which has the consequence 
that in the limit as , the values of the electron scattering factors at low scattering will be 
large and positive for cations, and large and negative for anions. These effects can be used to 
establish the atomic charge (see, for example, Wang et al Acta Cryst. D77, 534 (2021), where 
Mg2+ ions are identified next to nucleotides in cryo-EM maps). 
 
As discussed in the Peng reference (Eq. 15), the effect of ionic charge on the electron scattering 
factor may be approximated within the framework of the Mott equation: 
 

Eq. 7     

where ∆Z represents the ionic charge so that the first term on the right-hand side of Eq. 7 is the 
scattering factor of the neutral atom, while second term represents the contribution of the excess 
charge to the ionic scattering factor. 
 
Example – the hydrogen atom 
For a radially symmetric function, the Fourier transform of a function r(r) and the inverse 
transform are given by the expressions: 

Eq. 8     

The electron density r(r) is given by square of the wavefunction; for a hydrogen atom with an 
electron in the 1s orbital, the wavefunction has an exponential dependence on r. The Fourier 
transform of this distribution gives the X-ray scattering factor for hydrogen: 

Eq. 9      

Note: in Eq. 9, the X-ray atomic scattering factor is defined in terms of S (not s), and a = the Bohr 
radius of the hydrogen atom, with 

Eq. 10     

The numerical values calculated from this expression agree with those in the International Tables 
for the hydrogen X-ray atomic scattering factor. 
 

s→ 0

fe s( ) = m0e
2

8πε0h
2

Z − fx s( )⎡⎣ ⎤⎦
s2

= fe
(0) s( )+ m0e

2

8πε0h
2

ΔZ
s2

F S( ) = 2r
S
ρ r( )

0

∞

∫ sin 2πSr( )dr

ρ r( ) = 2S
r0

∞

∫ F S( )sin 2πSr( )dS

ρ r( ) = 1
πa3

e−2r a

fx S( ) = 1

1+ πSa( )2( )2

a =
ε0h

2

πm0e
2 = 5.2918×10

−11m = 0.52918Å
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The electron atomic scattering factor is the Fourier transform (Eq. 2) of the electrostatic potential 
of the hydrogen atom (Eq. 4).  We will not go through the math in detail, but will outline that the 
Fourier transform of Eq. 4 can be calculated as the sum of the Fourier transform of the proton term 
plus the Fourier transform of the electron distribution term (the latter has a minus sign, as in Eq. 
4, since the electron has a negative charge).  To do this, we utilize the important (but non-trivial) 
relationship of the Fourier transform of 1/r (see Electrostatics notes) 

Eq. 11      

To calculate the Fourier transform of the electron distribution in Eq. 4, we recognize that term 
represents a convolution, and by the convolution theory, the Fourier transform of a convolution is 
the product of the Fourier transforms of the two functions (see “Useful properties of Fourier 
Transform” section of these notes).  Hence, the Fourier transform of Eq. 4 becomes: 
 

Eq. 12   

Rearranging gives 

Eq. 13    

using Z = 1 and replacing S with 2s, we have 

Eq. 14a    

which is in the form of the Mott equation.  The electron atomic scattering factors calculated with 
Eq. 14a agree with those tabulated in Table 3.3.3A of the 1968 International Tables.  Using the 
definition of the Bohr radius, a (Eq. 10) and a bit more rearranging gives the equivalent expression 

Eq. 14b   

which explicitly highlights that the units of the electron atomic scattering factor are length. 
 
Mott equation in terms of Bohr radius 
Using Eq. 10, the Mott equation can be expressed in terms of the Bohr radius of the hydrogen atom 

 Eq. 5c    

which again emphasizes that the corresponding units are length (a = m, s = m-1). 
 

FT 1
r

⎛
⎝⎜

⎞
⎠⎟
= 1
πS 2

fe S( ) = 2πm0e
h2

FT V r( )( ) = 2πm0eh2
1
4πε0

Ze
πS 2

− e
πS 2

1

1+ πSa( )2( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

fe S( ) = m0e
2

2πε0h
2

1
S 2

Z − 1

1+ πSa( )2( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

fe s( ) = m0e
2

8πε0h
2

1
s2
1− 1

1+ 2πsa( )2( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

fe s( ) = a2
2+ 2πsa( )2

1+ 2πsa( )2( )2
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

fe s( ) = m0e
2

8πε0h
2

Z − fx s( )⎡⎣ ⎤⎦
s2

= 1
8π 2a

Z − fx s( )⎡⎣ ⎤⎦
s2
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Alternative derivation of the atomic electron scattering factor for hydrogen by direct 
calculation of the Coulomb’s law electrostatic potential  
 
 Define the following coordinate system for hydrogen with the origin at the proton: 

 
The electrostatic potential, V(r), at the point r may be expressed 
 

Eq. 15   

 
with 

Eq. 9      

 
this expression may be integrated (I used Mathematica® –  
H_atom_electron_scattering_factors_calculations_Sept2021.nb) to give 
 

Eq. 16     

 
Note that even though the hydrogen atom is electrically neutral, the potential V(r) is always 
positive! 
 
Combining Eqs. 2, 8 and 16 gives the following equation.  Evaluating the integral with 
Mathematica® and introducing the Bohr radius gives the following expression for the electron 
atomic scattering factor: 
 

V r( ) = e
4πε0

1
r
−

ρ ′!r( )
!r − ′!r

d!′r∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= e
4πε0

1
r
− ′r 2 d ′r
0

∞

∫ sinϑ dϑ dϕ
ρ ′!r( )

r 2 + ′r 2 − 2r ′r cosϑ( ) 12
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥0

2π

∫
0

π

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ρ r( ) = 1
πa3

e−2r a

V r( ) = e
4πε0

1
r
+ 1
a

⎛
⎝⎜

⎞
⎠⎟
e−2r a

⎡

⎣
⎢

⎤

⎦
⎥
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Eq. 17    

 
as derived previously. 
 
 
  

fe S( ) = 2πm0e
h2

2r
S
V r( )sin 2πSr( )dr

0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2πm0e
h2

⎛
⎝⎜

⎞
⎠⎟

e
4πε0

⎛

⎝⎜
⎞

⎠⎟
2r
S
⋅ 1
r
+ 1
a

⎛
⎝⎜

⎞
⎠⎟
e−2r a

⎧
⎨
⎩

⎫
⎬
⎭
⋅sin 2πSr( )dr

0

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2πm0e
h2

⎛
⎝⎜

⎞
⎠⎟

e
4πε0

⎛

⎝⎜
⎞

⎠⎟
πa2

2+ πSa( )2( )
1+ πSa( )2( )2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= a
2

2+ πSa( )2

1+ πSa( )2( )2
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= a
2

2+ 2πsa( )2

1+ 2πsa( )2( )2
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Electron Density Calculation Using A and B Expressions from Old International Tables 
 
General expression 

 

 
where A(h,x) and B(h,x) are the International Table expressions 
and Ac(h) and Bc(h) are  and ,  respectively. 
 
If the F’s are on an absolute scale, with F000 included, then the electron density of the bulk solvent 
should be ~ 0.4 e/Å3 (see Lang et al. PNAS 111, 237 (2014)). 
 
  

ρ x( ) = 2
V

A h,x( )Ac h( )+ B h,x( )Bc h( )( )
h,asu
∑

F h( ) cosα h F h( ) sinα h



    

D.C. Rees  11/26/24 16 

Space group C2 Structure Factor and Electron Density Expressions 
(see old International Tables, vol I, page 376, space group 5, b as unique axis) 

 
 
relationships between symmetry related amplitudes and phases: 
 

 

 
Structure factor expression 

 

equivalent positions in C2   

 

 
where A(h,x) and B(h,x) correspond to the expressions for A and B in the International tables for 
h+k = even. 

F hkl( ) = F hkl( ) = F hkl( ) = F hkl( )
α hkl( ) =α hkl( ) = −α hkl( ) = −α hkl( )

F hkl( ) = F hkl( ) eiα hkl( ) = F hkl( ) cosα + isinα( ) = A hkl( )+ iB hkl( ) ≡ Ah + iBh

x, y, z; x , y, z ; x + 1
2
, y + 1

2
, z; x + 1

2
, y + 1

2
, z .

F hkl( ) = f j
atoms j
∑ e−Bjsin

2ϑ λ2

e2π i hx+ky+lz( ) + e2π i −hx+ky−lz( )( ) 1+ e2π i h+k( ) 2( )( )
1+ e2π i h+k( ) 2( )( ) = 0 when h+ k = 2n+1 and = 2 when h+ k = 2n

= 2 f j
atoms j
∑ e−Bjsin

2ϑ λ2

e2π i hx+ky+lz( ) + e2π i −hx+ky−lz( )( )
= 2 f j

atoms j
∑ e−Bjsin

2ϑ λ2

cos 2π hx + ky + lz( )( )+ cos 2π hx + ky + lz( )( )( )
+i 2 f j

atoms j
∑ e−Bjsin

2ϑ λ2

sin 2π hx + ky + lz( )( )+ sin 2π hx + ky + lz( )( )( )
cos A+ cosB = 2cos

A+ B
2

⎛
⎝⎜

⎞
⎠⎟

cos
A− B

2
⎛
⎝⎜

⎞
⎠⎟

 and sin A+ sinB = 2sin
A+ B

2
⎛
⎝⎜

⎞
⎠⎟

cos
A− B

2
⎛
⎝⎜

⎞
⎠⎟

= 4 f j
atoms j
∑ e−Bjsin

2ϑ λ2

cos2π hx + lz( )cos 2π ky( )

+i 4 f j
atoms j
∑ e−Bjsin

2ϑ λ2

cos2π hx + lz( )sin 2π ky( )

Ah = f j
atoms j
∑ e−Bjsin

2ϑ λ2

4cos2π hx + lz( )cos 2π ky( )⎡⎣ ⎤⎦ = f j
atoms j
∑ e−Bjsin

2ϑ λ2

A h,x( )

Bh = f j
atoms j
∑ e−Bjsin

2ϑ λ2

4cos2π hx + lz( )sin 2π ky( )⎡⎣ ⎤⎦ = f j
atoms j
∑ e−Bjsin

2ϑ λ2

B h,x( )
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electron density expression  
(modified slightly from IT expression at bottom of C2 listing) 
 

 

 
where A(h,x) and B(h,x) correspond to the expressions for A and B in the International tables for 
h+k = even. 
 

ρ xyz( ) = 4
Vc

F hkl( )
l=0
∑

k=0
∑

all  h
∑ cos2π hx + lz( )cos 2π ky −α hkl( )( )    for h+ k = 2n

cos A− B( )= cos AcosB + sin AsinB
sin A− B( )= sin AcosB − cos AsinB

= 4
Vc

F hkl( )
l=0
∑

k=0
∑

all  h
∑ cos2π hx + lz( ) cos 2π ky( )cosα + sin 2π ky( )sinα⎡⎣ ⎤⎦

= 4
Vc

Ah cos2π hx + lz( )cos 2π ky( )
l=0
∑

k=0
∑

all  h
∑ + Bh cos2π hx + lz( )sin 2π ky( )

= 1
Vc

Ah4cos2π hx + lz( )cos 2π ky( )
l=0
∑

k=0
∑

all  h
∑ + Bh4cos2π hx + lz( )sin 2π ky( )

= 1
Vc

AhA h,x( )+ BhB h,x( )( )
l=0
∑

k=0
∑

all  h
∑
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Integrated Electron Density about a Point 
The integrated electron density, I(R, xo) contained within a sphere of radius R about a point xo may 
be calculated by evaluation of the following integral 

 

 
One way to calculate I(R, xo) is to numerically evaluate this integral by calculating values of r(r) 
on a fine grid within the specified volume, with the value of the volume element dr obtained from 
the details of the grid spacings along xyz. The Uppsala program MAPMAN works this way. 
 
A computationally more efficient way of calculating this integral may be identified by noting that 
I(R, xo) can be equivalently written as the product of the electron density times a shape function 
s(r) that is 1 when r < R and 0 for r > R. 

 
This expression is the convolution of the electron density with the shape function. By the properties 
of Fourier transforms, the Fourier transform of a convolution is the product of the Fourier 
transforms of the two functions: 
 

 

 
Hence, the integrated electron density within a radius R of a point xo may be obtained from the 
value of the inverse Fourier transform of FT[I] at the point xo. 
 
A beautiful example of the use of the convolution theorem to evaluate an equivalent type of integral 
may be found in Andrew Leslie’s article Acta Cryst. A43, 134-136 (1987) which described a 
computationally efficient algorithm for the calculation of a Wang-type solvent envelope. 
 
 
  

I R,xo( ) = ρ r( )
r−xo <R
∫ dr

I R,xo( ) = ρ r( )σ r − xo( )∫ dr

FT I⎡⎣ ⎤⎦ = FT ρ r( )⎡⎣ ⎤⎦FT σ r( )⎡⎣ ⎤⎦
FT ρ r( )⎡⎣ ⎤⎦ = F hkl( )
FT σ r( )⎡⎣ ⎤⎦ = σ r( )

0

R

∫
2r
S
sin 2πSr( )dr = sin 2πSR( )− 2πSRcos 2πSR( )

2π 2S 3

FT I⎡⎣ ⎤⎦ =
sin 2πSR( )− 2πSRcos 2πSR( )

2π 2S 3
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
F hkl( )
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Relationship between Bave and Resolution 
 
The Wilson plot displays the resolution dependence of the average values of the diffracted 
intensities measured from a crystal.  If normalized to the value of the lowest resolution bin, the 
Wilson plot would ideally have the following dependence on or equivalently resolution 
(d): 

(Eq. 1)     

One could imagine that for structures diffracting to different resolutions, the value of 
ln[<I>/<I(0)>] at the high resolution limit for each structure might be approximately the same 

(designated “p” in the schematic below), where :  

Fig. 1     
 
For the collection of structures illustrated below, the value of p is ~ -3 to -4.  The Wilson plots 
shown below were calculated with the CCP4 program “Truncate” for a set of structures solved in 
our group (ie – this is not a systematic survey). 

Fig. 2    
 

sin2ϑ λ 2

ln
I d( )
I 0( ) = − 2Bsin

2ϑ
λ 2

= − 2B
4d 2

ln
I dmax( )
I 0( ) = − B

2dmax
2 ≡ p
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The slope of the Wilson plot (ln<I> vs ) equals –2Bave, so that the slope of ln<I> vs 

will equal .  If a crystal diffracts to the high resolution limit, dmax, then if 

, and if p ~ constant for different structures, we would expect .   

 
 
The relationship between Bave and d2max is plotted below for proteins in the PDB (cyan), based on 
an unpublished analysis of James Holton from ~2010 (but see J. Sync. Rad. 16, 133 (2009), Acta 
Cryst. D66, 393 (2010)). For this analysis, the B’s are averaged in resolution bins.  While there 
does appear to be a reasonable linear dependence of Bave on dmax, there is also a constant term so 
that the empirical fit may be approximated as   
 
Eq. 2      Bave ~ 4 d2max + 12.   
 
For comparison, a set of membrane proteins (from a non-comprehensive analysis we did in 2010) 
and low resolution complexes from an analysis by Brunger (Acta Cryst. D65, 128 (2009)) are 
shown that suggest for a given resolution, the Bave for these classes of macromolecules are about 
2x that observed relative to the set of proteins deposited in the PDB (dominated by soluble 
proteins). 
 

Fig. 3  
 
 
 
  

sin2ϑ λ 2

1 d 2 −Bave 2

Bave
2

× 1
dmax

⎛

⎝⎜
⎞

⎠⎟

2

= − p Bave ∝ dmax
2
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At the resolution limit of a structure, the limiting point on the Wilson plot is given by 
 

 

 
With Bave ~ 4 d2max + 12, the relationship between Bave and dmax may be rewritten as 
  

(Eq. 3)     

 
This indicates that p is not a constant, but increases as the resolution numerically decreases, as 
indicated in the following schematic:  
 
 

Fig. 4   
 
 
 
 
 
 
 
 
 
 
 
 
 

ln
I dmax( )
I 0( ) = −

Bave
2dmax

2

−
Bave
2dmax

2 = −
4dmax

2 +12
2dmax

2 = −2− 6
dmax
2 = p
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Replotting the data in Figure 3 in the form of Figure 4 gives the following. For the proteins in 
James’ survey, the “predicted” dependence of Bave on dmax is observed (not surprisingly, because 
that data was used to derive the relationship in Eq. 2). Again, we see that the membrane proteins 
surveyed have a much higher B than anticipated based on Eq. 2, predominantly derived from 
water-soluble proteins. 

Fig. 5  
 
The differences between Fig. 1 and Figs. 4/5 reflect the contribution of the constant term in 
equation 2 – could this be a reflection of lattice dynamics? 
 
And, why do membrane proteins have such high Bs for their resolution?  
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Section II: Random Walks and Crystallography 
 
Useful references 
R. Srinivasan and S. Parthasarathy (1976) Some Statistical Applications in X-ray Crystallography, 
Oxford:Pergamon 
S. Chandrasekhar, Rev. Mod. Physics 15, 1 (1943) in N. Wax, ed. Selected Papers on Noise and 
Stochastic Processes, Dover (1954). 
H.C. Berg (1993) Random Walks in Biology, Princeton, 2nd edition. 
 
Background 
A one dimensional random walk starting at the origin with step-length l and an equal probability 
of moving to the right or left may be described by a Gaussian in the limit of large step number: 

 

where s2 = N l2 is the variance, or mean square distance from the origin, after N steps. 
 
 Consider the crystallographic structure factor expression for a centric reflection: 

 

where f is the scattering factor for each atom (assumed equal).  The mean square value of A is: 

 

so that the probability distribution becomes: 

 

 

The corresponding probability distribution on intensities is (with: 

 

The noncentric distributions are slightly more complex to derive, because the contribution of the 
imaginary B component to the structure factors also needs to be included; ie in this case, one has 
a two dimensional random walk.  Following the discussion in Chap. 1 of Srinivasan and 
Parthasarathy, one finds: 

 

see also Wilson, Acta Cryst. 2, 318 (1949) 

P x( ) = 1

2πσ 2
e
−x

2

2πσ 2

A = 2 f cos 2πhx( )
1

N /2

∑

A2 = N / 2( ) 2 f cos 2πhx( )( )2

= N / 2( ) 4 f 2( ) / 2 = Nf 2 = F 2 = I ≡ 1

P F( ) = P A( ) = 1

2π I
e− F

2 /2 I
= 1
2π
e− F

2 /2

P F( ) = P F( )+ P − F( ) = 2P F( ) = 2
π
e− F

2 /2

P2 I( ) = 1
2 I

P1 I( )     (S+P  eqn. B.53)

= 1
2π I

e− I /2

P F( ) = 2 F e− F 2
P I( ) = e− I
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Random R-values 
 
Wilson  Acta Cryst. 3,  397 (1950)    
 
The upper limit on R may be derived as follows.  First, notice that R can be written as: 
 

 

 
Let the probabilility distribution of X be given by Q(X), where X is the difference of F and F+X 
for F>0, and F-X and F, for F>X.  The probability that two reflections have values F and F+X is 
given by P(F)*P(F+X).  The total probability distribution (Q(X)) is summed over all Fs: 
 

 

plugging in the above distribution functions gives the following values for random Rs, based on F 
and I, for centric and non-centric reflections: 
 
 
 

R-factor  NC  C 
 F 0.586 0.828 
 I 1.000 1.273 

 
Other important cases include having correct, but incomplete models, and complete models with 
coordinate errors.  In this case, the R-factor is a function of resolution, and the dependence can be 
calculated by appropriate treatment of the variance in a random walk problem (Luzzati AC 5, 802 
(1952)): 
 

 
 
Randy Read (Acta Cryst.  A42, 140 (1986)) has also developed an analysis that estimates 
coordinate errors via sigma-A from the differences between Fo and Fc. 
 
 

R =
ΔF
F

≡
X
F

Q X( )= P F( )
0

∞

∫ P F + X( )dF + P F( )
X

∞

∫ P F − X( )dF

change variables from F, F-X to F+X,F

=2 P F( )
0

∞

∫ P F + X( )dF

X = XQ X( )
0

∞

∫ dX

σ A =σ 1 cos 2πhΔr( )
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Random Walks and Intensity Statistics 
 
 From the properties of one and two-dimensional random walks, the intensity probability 
distributions for centrosymmetric and noncentrosymmetric crystals may be derived (Wilson, Acta 
Cryst. 2, 318-321 (1949)): 
 

 

 
where z = the intensity value normalized as a function of resolution. From these and related 
distributions, various useful quantities, such as the R-factor expected for a random structure, may 
be derived.  A powerful approach to the treatment of more complex situations, such as treatment 
of twinning, is provided by the general solution to one-dimensional random walk problems 
(Chandrasekhar, Rev. Mod. Phys. 15, 1-89 (1943)).  Let the observed length of an N step, one-
dimensional random walk be denoted by p, where p is the result of N individual steps uk, k=1,...,N: 
 

 

 
The probability distribution PN(p) may be determined by a two-step process: 
 
(1) Calculation of lk, the characteristic function for the kth step, which is given by the Fourier 
transform of the probability distribution function for the kth step, P(uk): (note that Chandrasekhar 
uses a form of the Fourier transform without the 2p) 
 

 

 
(2) The probability distribution function of p, PN(p) is then given by the inverse Fourier transform 
of the repeated product of all N characteristic functions: 
 

 

 
 
Applications to twinning: 
 
 For the case of perfect twinning, the twinning fractions are given by 1/N, where N is the 
total number of crystals in a twin. For structures obeying Wilson statistics: 
 

PNC (z) = e
− z

PC (z) =
1
2π z

e− z/2

p = uk
k=1

N

∑

λk φ( ) = eiφuk
−∞

∞

∫ P uk( )duk

PN p( ) = 1
2π

e− iφ p
−∞

∞

∫ λk φ( )
k=1

N

∏⎧⎨
⎩

⎫
⎬
⎭
dφ
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The PN(p) distributions were first derived by E. Stanley (J. Appl. Cryst. 5, 191-194 (1972)). 
 
 The intensity distributions for noncentric, centric, twinned (N=2) noncentric and twinned 
centric reflections are given by P(z) = exp(-z), (2pz)-(1/2) exp(-z/2), 4z exp(-2z) and exp(-z) 
respectively. The ratio <I2>/<I>2 calculated from these distributions are 2, 3, 1.5, and 2, 
respectively.  Hence, this ratio provides a sensitive assay for the presence of twinning, provided 
the untwinned structure obeys Wilson statistics (M.R. Redinbo & T.O. Yeates, Acta Crystallogr. 
D49, 375-380 (1993); T.O. Yeates, Meth. Enz. 276, 344-358 (1997)). 
  

PNC uk( ) = Ne−Nuk

λk ,NC φ( ) = Ni
ϕ + Ni

PN ,NC p( ) = N
N pN−1

N −1( )! e
−Np

PC uk( ) = N
2πuk

e−Nuk /2

λk ,C φ( ) = Ni / 2
ϕ + Ni / 2

PN ,C p( ) = (N / 2)
N /2 p(N−2)/2

Γ N / 2( ) e−Np/2
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Section III:  Coordinate and Reflection Transformations; Molecular Replacement 
Unit Cell Transformations 
 
 On occasion, it may be necessary to transform coordinates and reflection lists between 
different choices of unit cell.  This may arise if the unit cell chosen by auto-indexing during data 
collection is not the cell that you would like, or if there is some relationship between different 
crystal forms that one wishes to emphasize.  These transformations are easy to implement, and 
more details can be found on pages 70-72 of Volume A of the International Tables. 
 
Let P be the matrix that transforms the unit cell axes (a1) of crystal form 1 into the unit cell axes 
of crystal form 2 (a2): 
 

a2T =  a1T  P 
 
where  a1T is the row vector (a b c), etc.  The determinant of P gives the unit cell volume of crystal 
2 relative to crystal 1 (and will be positive if right-handed coordinate systems are used). 
 
P also transforms the reflection indices from crystal 1 (h1) to the indices of crystal 2 (h2): 

h2T =   h1T P 
 
where h1T is the row vector (h k l).  The inverse transform from crystal 2 to crystal 1 is given by 
the matrix Q = P-1 (and usually, P-1 is not the same as PT).  Q transforms the basis vectors: 
 

a2* = Q  a1* 
 

x2 = Q x1 
 
 
where a1* is the column vector of the reciprocal space vectors, x1 is the column vector of the 
coordinates of a point in real space, etc. The eigenvectors of Q with unit eigenvalues correspond 
to directions (x vectors) that are unchanged by this transformation. 
 
If the real space lattice is translated by a vector p, then the inverse shift is given by q = - Q p . 
 
The real space metric tensor, Gij = ai.aj, transforms as 
 

G2 = PTG1P 
 
and the reciprocal space metric tensor transforms as 
 

G2* = Q G1* QT 
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Example:  Transformation from primitive rhombohedral cell to triply primitive hexagonal cell 
 
 The standard obverse setting is used for the hexagonal cell, with origins at (0,0,0), 
(2/3,1/3,1/3), (1/3,2/3,2/3), and the reflection condition -h+k+l = 3n  (see Table 5.1 and figure 5.7 
of Vol A of the International Tables).  For this transformation (see Table 5.1): 
 

 

 
equating the relevant matrix elements gives: 
 

 

 

 

P =
1 0 1
1 1 1
0 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

         Q = P−1 =
2 / 3 −1/ 3 −1/ 3
1/ 3 1/ 3 −2 / 3
1/ 3 1/ 3 1/ 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

GR = aR
2

1 cosα R cosα R

cosα R 1 cosα R

cosα R cosα R 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

GH =

aH
2 aH

2 cosγ H 0

aH
2 cosγ H aH

2 0

0 0 cH
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= PTGRP

= aR
2

2− 2cosα R cosα R −1 0

cosα R −1 2− 2cosα R 0

0 0 3+ 6cosα R

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

cosγ H = − 1
2

;  γ H = 120˚

aH = aR 2(1− cosα R )

cH = aR 3(1+ 2cosα R )

cosα R =
2− 3(aH / cH )

2

6(aH / cH )
2 + 2

aR
2 =
cH
2 (6(aH / cH )

2 + 2)
18
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Changing the Hand of a Space Group 
CCP4 Program Suite Documentation 
file:///sw/share/xtal/ccp4-4.2.2/html/reindexing.html#changing_hand 
 
Test to see if the other hand is the correct one:  
Change x,y,z for (cx-x, cy-y, cz-z)  
Usually (cx,cy,cz) = (0,0,0).  
 
Remember you need to change the twist on the screw-axis stairs for P3i, P4 i, or P6 i! 
 
P21 to P21; For the half step of 21 axis, the symmetry stays the same.  
 
P31 to P32  
P32 to P31  
 
P41 to P43 
(P42 to P42 : Half c axis step)  
P43 to P41  
 
P61 to P65  
P62 to P64  
(P63 to P63) 
etc.  
 
In a few non-primitive spacegroups, you can change the hand and not change the spacegroup by a 
cunning shift of origin:  
I4 1 
(x,y,z) to (-x,1/2-y,-z)  
I4 122  
(x,y,z) to (-x,1/2-y,1/4-z)  
F4132  
(x,y,z) to (3/4-x,1/4-y,3/4-z)  
 
Plus some centric ones:  
Fdd2 (space group 43) 
(x,y,z) to (1/4-x,1/4-y,-z)  
I41md (space group 109) 
(x,y,z) to (1/4-x,1/4-y,-z)  
I41cd (space group 110) 
(x,y,z) to (1/4-x,1/4-y,-z)  
I4bar2d (space group 122) 
(x,y,z) to (1/4-x,1/4-y,-z) 
  



    

D.C. Rees  11/26/24 30 

Equivalent Reflections and Phase Relationships 
 
 Let the jth symmetry operation have a rotation matrix Cj and a translation vector tj.  Then 
 

hjT = hT Cj 
 

a(hj) = a(h) - 2p (hT. tj) 
 
For centric reflections where hT Cj = -hT 
 

a(hj) = p (hT. tj) 
 
Proof (see Bertaut Acta Crystallogr. 17, 778 (1964)) 
 

 

 
If Cj, tj and Cl, tl are crystallographic symmetry operators, then by definition, transformation of a 
point x by any Cj,tj generates an equivalent position.  Hence, if (Cjx+tj) = xj, then Clxj + tl is 
another equivalent position.  Therefore, the term in {} = F(h), and 
 

 
 
If hCl = -h, then F(h) and F(hCl) are both Friedel mates and centric. Since a(-h) = -a(h) by Friedel's 
law, then for centric reflections: 
 

 

 
  

F(h) = fe2π ih(Cjx+t j )
j
∑

F(hl ) = F(hCl ) = fe2π ihCl (Cjx+t j )
j
∑

= e−2π ihtl fe2π ihCl (Cjx+t j )+tl
j
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

F(hCl ) = e
−2π ihtl F(h)

α (h ) =α (h)− 2πhtl = −α (h), or

α (h) = πhtl     (modulo π )
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P212121 phase relationships 
 
Space group 19 equivalent positions: 

 

 
from the section in the crystallographic appendices on equivalent reflections and phase 
relationships  

 

with hT = (hkl), and j corresponding to the equivalent positions listed above, one can derive: 
 

 

For comparison, the phase relationships can also be obtained from the structure factor tables in 
Volume I of the "old" International Tables 
 

indices 
conditions 

    

h+k=2n 
k+l=2n 
(h,k,l even) 

a a a a 

h+k=2n 
k+l=2n+1 
(h+l=2n+1) 

a p+a a p+a 

h+k=2n+1 
k+l=2n 
(h+l=2n+1) 

a p+a p+a a 

h+k=2n+1 
k+l=2n+1 
(h+l=2n) 

a a p+a p+a 

 
addition of p to a phase is equivalent to the transformation A + iB to -A - iB. 
 
  

x, y, z; 1
2
− x, y , 1

2
+ z; 1

2
+ x, 1

2
− y, z ; x , 1

2
+ y, 1

2
− z

hj
T = hTC j

α hj
T( ) =α hT( )− 2π hT ⋅ t j( )

α hkl( ) = −α hkl( )
α hkl( ) =α hkl( )− 2π h+ l

2
⎛
⎝⎜

⎞
⎠⎟
=α hkl( )+π h+ l( ) = −α hkl( )

α hkl( ) =α hkl( )− 2π h+ k
2

⎛
⎝⎜

⎞
⎠⎟
=α hkl( )+π h+ k( ) = −α hkl( )

α hkl( ) =α hkl( )− 2π k + l
2

⎛
⎝⎜

⎞
⎠⎟
=α hkl( )+π k + l( ) = −α hkl( )

hkl( ) hkl( ) hkl( ) hkl( )
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Phase Relationships of Friedel Pairs in the Presence of Anomalous Scattering 
 
In the absence of X-ray absorption (anomalous scattering), the electron density values are real, 
so that , which is equivalent to  and  (Friedel’s law). 

 
For centrosymmetric reflections (either from a centrosymmetric crystal, or certain projections of a 
noncentrosymmetric crystal), an inversion center at the origin gives rise to the relationship 

, so that  = 0 or p. 
 
In the presence of X-ray absorption (anomalous scattering), due to absorption and the 
associated introduction of an imaginary component to the relevant atomic scattering factors, 

and Friedel’s law no longer holds.  
 
For noncentrosymmetric structures when the absorption effects due to the presence of a heavy 
atom (h) are small relative to the overall scattering from the rest of the structure (p), the difference 
between Friedel mates can be derived (see the Crystallography notes) 

 

where aph = phase of the “normal” scatterers, y = phase of the absorbing atoms, and |d| = 
magnitude of imaginary component of the scattering factor for absorbing atoms. 
 
 
For centrosymmetric structures, Friedel’s law is valid, with and , but 

the phases are no longer restricted to 0 or p, as shown by the following construct. 
 

 
 
 
  
  

F h( ) = F * h( ) F h( ) = F * h( ) α h( ) = −α h( )

α h( ) =α h( ) = −α h( ) α h( )

F h( ) ≠ F * h( )

Δano = ( Fph h( ) − Fph h( ) ) = −2 δ h sin(ψ −α ph )

F h( ) = F * h( ) α h( ) =α h( )
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Orthogonalization Convention 
 
 We use the convention adopted by Brookhaven, TOM/FRODO, O, X-PLOR and CCP4 
(ncode = 1) - unit cells are orthogonalized onto a Cartesian coordinate system defined by a, c*x a 
and c*.  Beware: other programs may use different orthogonalization conventions.  

 
 With this convention, the matrix converting fractional to orthogonal coordinates is: 
 

 

 
where Vol = abc (1 - cos2a - cos2b - cos2g + 2cosa cosb cosg)1/2 = sqrt(Det(G)).  This matrix can 
be calculated by ORTMAT(SUB_2).FOR.   
 
Specific forms of this matrix for monoclinic and trigonal cells are given: 
 
 Monoclinic cells - orthogonal x and y superimpose with crystallographic a and b axes: 
 

 

 
 Trigonal cells - orthogonal x and z superimpose with crystallographic a and c axes: 
 

 

X, a

Z, c*
c

Y
b

X
Y
Z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
orthogonal

=
X̂ ⋅a X̂ ⋅b X̂ ⋅c
Ŷ ⋅a Ŷ ⋅b Ŷ ⋅c
Ẑ ⋅a Ẑ ⋅b Ẑ ⋅c

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
fractional

=

a bcosγ ccosβ

0 bsinγ c
cosα − cosβ cosγ

sinγ
⎧
⎨
⎩

⎫
⎬
⎭

0 0
Volume
absinγ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
fractional

a 0 ccosβ
0 b 0
0 0 csinβ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

a acosγ 0

0 asinγ 0

0 0 c

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Deorthogonalization: 
 
Deorthogonalization matrices are the inverse (not transpose) of the orthogonalization matrix - 
these may also be obtained from ORTMAT(SUB_2). For monoclinic and trigonal cells, these 
matrices take the form: 
 
Monoclinic: 
 

 

 
 
Trigonal:   
 

 

 
  

1
a

0 − cosβ
asinβ

0
1
b

0

0 0
1

csinβ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
a

− cosγ
asinγ

~
0.57735
a

0

0
1

asinγ
~
1.15470
a

0

0 0
1
c

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Molecular Replacement - Practical Considerations 
 
 
 Situations often arise where it is necessary to create an output electron density map from 
one or more input electron density maps.  Variations on this theme include non-crystallographic 
symmetry (NCS) averaging, skewing maps down a particular axis (such as a molecular twofold), 
or molecular replacement (MR) between different crystal forms. The algorithms we use for this 
purpose are loosely based on the double sort method introduced by Bricogne (Acta Cryst. A32, 
832-847 (1976)); given the advances in computer memory, this is not needed in the 21st century.   
 
 NCS averaging and MR provide important methods for both obtaining and refining phases.  
If multiple images of a molecule are present in one or more different crystal forms, then it is 
possible to get an improved representation of the molecule by averaging these different images.  
We will specifically address implementation of this process in the case that no atomic models are 
available, so that we must work directly with electron density maps.  This has the critical 
consequence that we are primarily concerned with grid points in electron density maps that are 
defined only at specific sites in the unit cell (given by integer multiples of the sampling number 
along each cell axis), rather than atomic coordinates that may be located at any position in the unit 
cell. 
 
 An essential step in averaging is determination of the orientational and translational 
relationships between different molecules. These relationships may be established by some 
combination of: 
 
 (1) rotation functions (Rossmann and Blow Acta Cryst. 15, 24-31 (1962)). - self and cross; 
these usually are calculated with intensity data only, but can be performed with two Patterson maps 
(X-PLOR, REALRF).  Contiguous regions in electron density maps (molecules?) can also be 
masked off and inverted to simplify the rotation function. Crowther's Fast Rotation Function 
(Crowther, in “The Molecular Replacement Method” MG Rossmann, ed., pp 173-178, Gordon & 
Breach (1972)), MERLOT, X-PLOR, AMORE, and CCP4 programs can be used for these 
calculations. 
 
 (2) native Patterson functions - useful for identifying even fold NCS rotations that are 
parallel to even fold crystallographic rotation axes, or for molecules that are related by a 
translation. If the NCS relationships are approximate, characteristic peaks should be stronger at 
low resolution (8Å or so) that at higher resolutions.   
 
 
Native Patterson maps and self rotation functions should always be calculated if NCS is 
suspected. 
 
 (3) translation functions - various flavors, depending on what sort of phase or model 
information is available for the various crystal forms.  We have programs for either Crowther-
Blow translation functions (Acta Cryst. 23, 544-548 (1967); problem specific); GENTF (more 
general), or phased translation programs (when a source of phase information is available for an 
unknown model).   
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 (4) native anomalous Patterson functions - can establish equivalent positions in different 
crystal forms.   
 
 (5)  heavy atom coordinates - can be used to derive NCS relationships, if they can be 
assigned to appropriate groups. 
 
 (6)  brute force search - if all else fails, one can systematically search rotation and 
translation space for NCS relationships in either electron density maps or with models (really 
desperation time).  We don't have an official program to do this, but Pamela has implemented this 
for MHC and FcRn; Mitch and Geoff also have genetic algorithm programs to do this. 
 
 (7)  refinement methods based on Patterson functions (TNT, X-PLOR or INTREF (T. 
Yeates) ) or electron density maps (RHOPRP) can be used to improve initial NCS parameters.  The 
RHOPRP programs (PNTGEN, RHOREF) need to be rewritten into a single, modern package. 
 
We will assume that the NCS relationships have been established, and are represented in the form: 
 
(I)  x2 = C x1 + d 
 
where x1 and x2 are coordinates of equivalent positions in two molecules related by NCS.  C is the 
rotation matrix, and d is the translation vector.  Rotation matrices are specified by 3 rotation angles.  
At least three different conventions are in use in our group: 
 
 (a)  Euler angles: q1, q2, q3   
 
 (b)  Crowther's Euler angles: a = q1-90,  b = q2,  g = q3+90 
 
 (c)  spherical polar angles: f, y, k   
 
The FRF rotation function convention is that C obtained from a rotation function calculation 
rotates crystal 1 into crystal 2.  A handy property of rotation matrices is that the inverse rotation 
(from molecule 2 to molecule 1) is given by the transpose matrix, CT.  Whenever possible, we are 
trying to use spherical polar angles, since they are easier to visualize.  In this case, the inverse 
rotation to f, y, k  is given by f, y, -k. Routines for generating rotation matrices from Euler and 
spherical polar angles, and vice versa, are in [rees.math]matsub.for.  Four subroutines are of 
particular utility: 
 ROTMATS(phi,psi,fkappa,C) generates C from spherical polar angles 
 SPHANG(C,phi,psi,fkappa)  generates spherical polar angles from C 
 
 ROTMATE(the1,the2,the3,C) generates C from Euler angles 
 EULERANG(C,the1,the2,the3) generates Euler angles from C 
 
 Equation (I) is valid only for orthogonal coordinate systems, which means that  the 
crystallographic coordinates must first be transformed by an orthogonalization matrix.  Our official 
orthogonalization conventions (as of 11/28/92) are described in a separate section of this 
document.  
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 Unlike crystallographic symmetry operators, C and d only relate specific sets of molecules.  
It is therefore essential that the molecular boundaries be defined in order to assign electron density 
grid points to a specific molecule.  This is accomplished by specifying a molecular envelope; points 
inside the envelope belong to a particular molecule, whereas points outside belong to either solvent 
or another molecule. Depending on the status of the structure determination, the envelope may be 
defined in several ways.  At early stages of a structure analysis, simple shapes like spheres or cubes 
may suffice for an envelope.  At later stages, a more detailed envelope is required.  This may be 
determined by some variant of B.C. Wang's algorithm (Meth. Enzym. 115, 90 (1985)) using either 
unaveraged maps (original Wang) or averaged maps, or from atomic models using either the 
muffin-tin option of EDCALCD or MAPMAN/O to both create and edit envelopes. 
 
 Once the NCS relationships and the envelope are defined, averaging may begin.  This 
process may be envisioned as constructing a map in crystal 1 from electron density values in crystal 
2.  Crystal 1 and 2 may be the same in the case of NCS averaging, or they may be different for 
skewing and MR problems.  In general, grid points in crystal 1 will not correspond to grid points 
in crystal 2; consequently, the required density values in crystal 2 must be obtained by interpolation 
from the nearest-neighbor grid points.  Satisfactory linear interpolation in crystal 2 requires that 
this map (the "fine grid" map) be sampled at grid spacings of about 1/5 to 1/6 of the maximum 
resolution.  Coarser grids can be used with quadratic interpolation, as in RAVE/MAVE. The 
crystal 1 map (the "coarse grid" map) need only be sampled at about 1/3 the resolution for 
satisfactory structure factor calculations by the inverse FFT. 
 
 Schematically, the averaging calculation proceeds as follows: 
 
1. Test to see if grid point i in crystal 1 is inside the envelope; 
 if NO, go to the next grid point and repeat. 
 if YES, calculate coordinate of equivalent point x2 in crystal 2 
 
3. Interpolate the density value at x2 in crystal 2. 
 
3. Place this density value at x1 in crystal 1 ("reconstruction"). 
 
 Go to the next grid point in crystal 1, and repeat until all necessary points in crystal 1 have 
been tested.  The reconstructed crystal 1 map may then be FFT inverted to give calculated structure 
factor amplitudes and phases.  These calculated structure factors may be either combined or 
transferred to the observed structure factors.  If this is an MR calculation, then the process stops 
here.  If NCS averaging is being performed, then the process continues until convergence (4 or 
more cycles) is achieved. 
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Coordinate Superposition Considerations: Overview 
 
originally prepared for ABC transporter review in Nat. Rev. Mol. Cell Biol. 10, 218 (2009) – 

summarized in Supplementary Information S3 (box) 

When structures are available for more than one homologous protein, an inevitable consideration 
concerns the conformational relationships between them. Although conceptually this comparison 
should be a straightforward process, a number of subjective decisions are involved that can 
influence the final conclusions.  At the heart of these comparisons is the rigid body superposition 
between the coordinate sets for the two conformations, x and x’, which may be described in 
terms of a rotation matrix R and a translation vector d by the equation: .  The 
calculation of this transformation is incorporated into a number of superposition programs and is 
unambiguous for a pair of truly rigid body structures.  With real coordinate sets, the key 
operation is to identify structural elements that are essentially unchanged in the two 
conformational states, ie that behave as rigid bodies. A sensitive way to identify approximately 
rigid elements is with difference distance plots to find regions with conserved intramolecular 
distances. In practice, an iterative algorithm is used to find equivalent residues that superimpose 
within a certain limit. For the ABC subunits of ABC transporters, the secondary structure 
elements of the catalytic domain represent a commonly maintained rigid element.  The TMDs 
are more variable, but conserved cores have been identified for the TMDs of both type I and type 
II ABC importers that can serve as a basic rigid scaffold. 
 
Another aspect to characterizing conformational transformations is the choice of reference frame 
to compare the structures.  For ABC transporters exhibiting two-fold molecular symmetry 
(which is approximately the case for all transporters solved to date), two principal reference 
frames are typically employed: the use of the entire transporter (all four domains of each 
transporter) in the superposition so that the symmetry axes coincide (the “symmetric frame”), or 
the use of only an individual domain (or part of a domain) in the superposition (the “single 
domain frame”).  This  problem has counterparts in the analysis of conformational transitions in 
any system, particularly symmetric, oligomeric assemblages (Perutz “Mechanisms of 
Cooperativity and Allosteric Regulation in Proteins”, Cambridge Univ. Press (1990)). Unless the 
two transporter structures are identical at the quaternary structural level, these comparisons are 
unlikely to yield equivalent results. 
 
These considerations may be illustrated by the following analysis.  Consider a molecular 
assemblage, a transporter for concreteness, that has two structurally equivalent subunits A and 
A’ related by a two-fold operator TA.  Consider further a second conformation of the transporter 
with subunits B and B’ related by a two-fold operator TB.  When the entire molecular 
assemblages are superimposed (the symmetric frame), the two-fold axes will coincide, 
corresponding to a single operator, T, and the arrangement depicted in (Fig 1a) is observed.  
With this choice of reference frame, the individual subunits do not coincide optimally, however.  
Let R be the rotation matrix that transforms B to the orientation observed in A, ie A = RB.  By 
the properties of matrix algebra, A’ = TRT B’  (for the purposes of this discussion, the 
translation component will be ignored).  This transformation defines a new reference frame, the 
single domain frame (Fig 1b), in which one set of subunits are superimposed, B onto A, by the 
rotation R.  The position of B’ in this frame is given by B” = RB’, and by the transformation that 

′x = Cx + d
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converts B” to A’ becomes A’ = TRTR-1 B”.  If the two-fold operator T is taken along the z axis, 
and the rotation matrix R corresponds to a rotation angle k about an axis with direction cosines

 , then with the help of Mathematica® (http://www.wolfram.com), the 

transformation converting B” to A’ is equivalent to a rotation about an axis with direction 

cosines  ,with .  This rotation axis is perpendicular to the 

reference two-fold axis oriented along z. The rotation angle  is given by 
.   The important point is that if the 

transformation interconverting subunits in the symmetric frame is predominantly along the two-
fold axis (as observed for BtuCD and HI1470/1), then the equivalent transformation in the single 
domain frame corresponds to a nearly perpendicular axis in the plane normal to the two-fold. As 
discussed for BtuCD and HI1470/1, if the transformation in the symmetric frame is parallel to 
the two-fold axis, then the relative orientation of subunits is unchanged by this operation, but a 
translational displacement is generated.  Furthermore, if the rotation axis is distant from a point, 
the distinction between a rotation about this axis and a perpendicular translation is blurred. 
Hence, without specification of the reference frame, terms such as hinge angle, twist axis, 
displacement vector, etc. in defining the relationship between subunits are ambiguous.  
 

 
 

Figure 1 Illustration of the (a) symmetric and (b) single domain references frames for the 
comparison of multidomain assemblies. Two conformations of a dimeric assembly, AA’ and BB’ 
are depicted.  In the symmetric frame, the two-fold axes relating the pairs of subunits in the two 
assemblies are superimposed and correspond to the axis T oriented vertically. In (b), subunit B is 
superimposed onto A through a rotation R that also rotates B’ to B” and T to RT.   
 
  

0 m 1−m2{ }
p q 0{ } p q = − 1−m2 tan κ 2⎡⎣ ⎤⎦

� 

ϕ
cosϕ = 1− 4m2 + 3m4 − 4m2 m2 −1( )cosκ +m4 cos2κ
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Superposition Relationships for Oligomeric Proteins 
 
Two subunits related by a twofold rotation axis 
 
 

 
Illustration of the (a) symmetric and (b) single domain references frames for the comparison of 
multidomain assemblies. Two conformations of a dimeric assembly, ab and AB are depicted.  In 
the symmetric frame, the two-fold axes relating the pairs of subunits in the two assemblies are 
superimposed and correspond to the axis T oriented vertically. In (b), subunit A is superimposed 
onto a through a rotation R that also rotates B to B' and T to RT.   
 
 
R and d transform A to a and B to B'; the transformation between b and B' when A and a are 
superimposed becomes: 
 

 

 

xa = RxA + d
xb = Txa = TRxA +Td

= TRTxB +Td
and

xB ' = RxB + d
RxB = xB ' − d

xB = R
−1 xB ' − d( )

xb = TRTxB +Td = TRTR
−1xB ' +T I − RTR−1( )d

≡ RBxB ' + dB

a b
RA

B'

(b)

T
RT

a bA B

(a)

T

R
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Two subunits with two domains related by a twofold 
 
R1, d1 superimpose A onto a 

 
RB, dB transform B' to b when A is superimposed onto a. 

 

 
R2, d2 superimpose C onto c 

 
RD, dD transform D" to d when C is superimposed onto c. 

 

 
RC, dC transform C' to c when A is superimposed onto a 

 

a b

R1A

B'

(b)

T
R1T

a bA B

(a)

T

R1

CD cd d c
C'

D'

xb = RBxB ' + dB
RB = TR1TR1

−1  and dB = T I − R1TR1
−1( )d1

a b B"

(d)

T R2T

a bA B

(c)

T

R2

CD cd d c

R2C

D"

A"

xd = RDxD" + dD
RD = TR2TR2

−1  and dD = T I − R2TR2
−1( )d2

xc = R2xC + d2 = RC R1xC + d1( )+ dC = RCx ′C + dC( )
RC = R2R1

−1  and dC = d2 − R2R1
−1d1
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additional relationships 

 

 
 
properties of rotation axes 
 
if the rotation axis corresponding to R1 and/or R2 is  with angle k, then 

  is about the axis with direction cosines , with 

,  which is perpendicular to the original molecular twofold along z (but 
is not perpendicular to the R1 or R2 rotation axis; for molecular symmetry greater than 2, the 
equivalent to RB is also not perpendicular to the original molecular symmetry axes, but rather it is 
perpendicular to the bisector of the original and rotated molecular symmetry axes. The rotation 
angle corresponding to RB is given by . 
 
If m = 0, cosf = 1, and RTR-1 = T so 

 

the net result is a relative translation of the two subunits perpendicular to the twofold. 
 
if m = 1 (rotation axis along y (ie, perpendicular to molecular twofold), then f = 2k.   
 
if RB and RC are both along y, with rotation angles k1 and k2, then RD is also along y, with rotation 
angle k1 - 2 k2. 
 
If a y translational component is present in dB and dC of y0 and y1, the translational component of 
RD along y = y0 - 2 y1 (this statement needs to be confirmed). 
 
 

TRB = R1TR1
−1

TRD = R2 ⋅T ⋅R2
−1 = RCR1 ⋅T ⋅R1

−1RC
−1 = RC ⋅R1TR1

−1 ⋅RC
−1 = RC ⋅TRB ⋅RC

−1

RD = TRCTRBRC
−1

dB = T − RB( )d1
dC = d2 − RCd1
dD = T − RD( )d2

0 m 1−m2{ }
RB = TR1TR1

−1  or RD = TR2TR2
−1  p q 0{ }

p q = − 1−m2 tan κ 2⎡⎣ ⎤⎦

cosϕ = 1− 4m2 + 3m4 − 4m2 m2 −1( )cosκ +m4 cos2κ

T −TRTR−1 = T − I =
−2 0 0
0 −2 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

dB = T −TRTR−1( )d1 =
−2x0
−2y0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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tests of relationships with methionine/maltose transporter 
MetNI (Cy5) = AC/BD 
Mal (2R6G) = FA/GB = ac/bd 
R1,d1 superimposes A onto a 
 
 
operator f y k dx dy dz 
R1 
Aà F 

340.26 29.60 340.33 -5.69 4.19 -4.33 

RB 
Bà G 

186.91 148.81 324.45 11.56 -9.49 -3.78 

RC  
CàB 

134.21 149.43 331.27 -3.50 -0.19 6.26 

RD  
DàA 

229.39 8.55 340.99 21.51 -3.84 4.13 

R2 
CàB 

104.65 132.50 349.48 -11.01 3.23 5.23 

TmalFG 
 

269.33 89.32 180 -0.30 0.30 -0.01 

TmetAB 
 

90 90 180 0 0 0 
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Generalization to N-mer Oligomeric Symmetry 
 
 

 
One conformation of the oligomer has subunit coordinates A, A', …, with the N-fold rotation axis 
N, while another has coordinates B, B', …, with rotation axis N'.  The rotation matrix R rotates B 
to A (and B' to B"). 
 

 

 
(for a two-fold, , as derived previously) 
 
points on the B" to A' rotation axis are consequently on an eigenvector of N(N')T. 
 
Only for twofold molecular symmetry is the B" to A' rotation axis perpendicular to the molecular 
symmetry axis.  In general, it is perpendicular to a bisector of N and N', as derived in the following.  
As above, let the rotation axis be in the yz plane  with angle k.  The z axis 

(the direction of N) then rotates to  

 

 

′′B = R ′B = ′N RB

′B = R−1 ′N R
N

!"#$ B = NB = R−1 ′′B ; B = NT ′B( )
⇒ N = R−1 ′N R and ′N = RNR−1

′A = NA = NRB
= NRNT ′B
= NRNT R−1 ′′B = N ⋅RNT R−1 ⋅ ′′B

= N ′N( )T ′′B

′A = TRT ′B = TRTR−1 ′′B

0 m 1−m2{ }
ˆ′z = msinκ , m 1−m2 1− cosκ( ), 1−m2 +m2 cosκ{ }

N, N'

AA'
BB'

A

RB
B"=RB'

N
N'

(a) (b)

A'
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and the angle between the old and new z axes is given by 
 

 
A general solution for the eigenvector of N(N')T corresponding to this B" to A' rotation axis has 
been too complicated for me to find by explicitly calculating the eigenvectors in Mathematica®.  
A solution can be derived by noting that if x1 is an eigenvector of N(N')T, then if (N')T takes x1 to 
x2, N must take x2 back to x1. 
 
For this calculation, transform to new coordinate system with Z axis bisecting z and z', and z x z' 
= X; hence N and N' are in the new ZY frame 
 

 
 
 
For the N' transpose, either need a (+) rotation around -N', or a (-) rotation around +N' direction. 
x1, x2 go from one N-mer rotation axis (N or N') to points in the XY plane and are perpendicular 
to both N and N'. 
 

 

 
To solve for x1, x2 in the XY plane - first find coordinates of point on unit circle in XY plane that 
is closest to N (or equivalently, N') axis. 

 

where a is a parameter that defines all the points on that line 
 

ẑ ⋅ ˆ′z = 1−m2 +m2 cosκ ≡ cosω

Y

Z

+X

zz'

Z

X

+Y

N-N'

x2

x1

ω

-z'

− ′N( )x1 = + ′N( )T x1 = x2
Nx2 = x1

∴N ′N( )T x1 = x1

XY circle   x2 = x 1− x2 0( ), x1 = −x 1− x2 0( )
N-fold axis 0 α sin

ω
2

α cos
ω
2

⎛

⎝⎜
⎞

⎠⎟
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The point on N-fold axis closest to a point on the unit XY circle minimizes the following quantity 
with respect to a  

 

 
giving for a and for the point n on the N-fold axis 

 

 
Now, the vectors x1-n and x2-n are related by a 360/N degree rotation about N, giving: 

 

 
Which can be solved for x to give 

 

 
as w à 0, x ~ sin(p/N) and y ~ cos(p/N) 
 
this derivation was originally worked out in rotmat_frames_yahoo!.nb 
 

x2 + 1− x2 −α sinω
2

⎛
⎝⎜

⎞
⎠⎟

2

+ α cosω
2

⎛
⎝⎜

⎞
⎠⎟

2

α = 1− x2 sinω
2

n̂ = 0 1− x2 sin2ω
2

1− x2 sinω
2
cos

ω
2

⎛

⎝⎜
⎞

⎠⎟
= 0 1− x2 sin2ω

2
1− x2

2
sinω

⎛

⎝
⎜

⎞

⎠
⎟

x1 − n̂( ) ⋅ x2 − n̂( )
x1 − n̂( ) x2 − n̂( ) =

1− 3x2 + 1− x2( )cosω
1+ x2 + 1− x2( )cosω = cos 2π

N

x = ±
1+ cosω − cos 2π

N
− cosω cos 2π

N

3+ cosω + cos 2π
N

− cosω cos 2π
N

=
cosω −1( ) cos 2π

N
−1

⎛
⎝⎜

⎞
⎠⎟

3+ cos 2π
N

+ 2cosω sin2 π
N
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summary  
 
the B" to A' rotation axis is an eigenvector of N(N')T and perpendicular to the bisector of the N and 
N' rotation axes.   
 
For a twofold axis, it is also perpendicular to the T and T' rotation axes: 
 

 

 
For N-fold symmetry, the rotation axis relating B" to A' is the eigenvector of N(N')T with unit 
eigenvalue. 
 

  

Raxis = 0 m 1−m2{ },  rotation angle κ

z = 0 0 1{ }
ˆ′z = msinκ , m 1−m2 1− cosκ( ), 1−m2 +m2 cosκ{ }
ρ = − 1−m2 tan κ 2⎡⎣ ⎤⎦ 1 0{ } =  eigenvector of TRTR−1

ρ ⋅ z + ˆ′z( ) = ρ ⋅ z + ρ ⋅ ˆ′z = 0+ 0 = 0
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Calculation of Screw (Helical) Parameters from a General Transformation 
Reference: J.M. Cox, J. Mol. Biol.  28, 151-156 (1967) 
 
 Let a general transformation be described by: 
 

 
 
where C and d are the rotation matrix and translation vector, respectively.  The vector, r, describing 
the direction of the rotation (screw) axis is given by the eigenvector of C with unit eigenvalue, 
while the screw rotation, d, about this axis may be calculated from the trace of C: 
 

 

 
The translation component, s, along the screw axis given by: 
 

 
 
Example (from Mathematica® for heparin polymer model): 
 
 MatrixForm[C] 
-0.57538    0.81146    -0.10232  rotation matrix elements 
-0.81757   -0.57413     0.04427 
-0.02282    0.10913     0.99377 
 
d={14.72189,3.82232,8.85950}   translation vector (Å) 
 
{vals, vects} =  Eigensystem[ C] 
  {{-0.5779 + 0.8161 I, -0.5779 - 0.8161 I, 1.}, eigenvalues 
  
  {{-0.9896 - 0.1382 I, 0.1363 - 0.9895 I, -0.04605 + 0.04279 I},  
   {-0.9896 + 0.1382 I, 0.1363 + 0.9895 I, -0.04605 - 0.04279 I},  
   {-0.0397337, 0.0487046, 0.998023}}}  three sets of eigenvectors 
 
r=vects[[3]] 
   {-0.0397337, 0.0487046, 0.998023}  eigenvector with eigenvalue=1. 
 
s = r.d 
    8.44319Å 
 
d = (180./3.14159)*ArcCos[((Sum[mat[[i,i]],{i,3}]-1.)/2.)] 
    125.301˚ 
 
repeat = s*360/d 
    24.258Å 

′x = Cx + d

δ = cos−1
Tr C( )−1

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

s = r ⋅d
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Transformation Matrix to a New Coordinate System  
 
The matrix that premultiplies a coordinate vector to transform the corresponding point to a new 
coordinate frame that lets one project down an axis with normalized components (xyz) in the 
original coordinate system, so that this axis becomes y in the new coordinate frame is given by: 
 

 

this system is created by taking (xyz) to be the new y; the new x is given by the cross product of 
(xyz) with the vector along the old z axis (001); and the new z axis is the cross product of the new 
x and y axes. 
 
With (xyz) defined as the new "z" axis; the new x is given by the cross product of the old y axis 
(010) and (xyz); and the new y axis as the cross product of the new z and new x axes, the 
transformation matrix becomes: 
 

 

And with (xyz) defined as the new “x” axis, the new “y” axis as the cross product of the old z axis 
(001) and (xyz) ; and the new “z” axis as the cross product of the new x and y axes, the 
transformation matrix becomes: 
 

 

y

1− z2
−x

1− z2
0

x y z

−xz

1− z2
− yz

1− z2
x2 + y2

1− z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

z

1− y2
0 −x

1− y2

−xy

1− y2
x2 + z2

1− y2
− yz

1− y2

x y z

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

x y z
− y

1− z2
x

1− z2
0

−xz

1− z2
− yz

1− z2
x2 + y2

1− z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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Transformation to a Skew Frame 
 
If a rotation operation is specified by the spherical polar angles f, y, k, then the transformation to 
the skew frame with the rotation axis along y is given by the spherical polar angles f-90˚, 90˚, y.   
[If k=180˚, then a second rotational transformation is given by the spherical polar angles f, 
180+y/2, 180˚ = f, y/2, 180˚, which corresponds to a rotation of 180˚ about an axis half way 
between the rotation axis and the original y axis.]   
 
In terms of the transformation matrices defined in the preceding section, for a rotation axis with 
spherical polar angles f, y (and equivalent direction cosines (l, m, n)), the transformation matrix 
corresponding to the spherical polar angles f-90˚, 90˚, y (and equivalent direction cosines 

) is (see relevant section of the Math Overview): 

 

Since the second row has elements l, m, n, the original rotation axis has become the new y axis, 
but the new x and z axes are different than the various conventions described in the preceding 
section.  The trace of this rotation matrix = 1 + 2m = 1 + 2cosk, so that k = y, as indicated.  
 
For the case of k = 180˚, the second transformation can be obtained by premultiplying the above 
transformation by a two-fold rotation about y: 

 

 
This is a symmetric matrix (it equals its transpose) so it corresponds to a rotation of 180˚ (as can 
be seen from the trace = -1 = cos k.  From the general definition of the rotation matrix in terms of 
the direction cosines (l, µ, n) and k (Math Overview), then the diagonal elements of the rotation 
matrix equal . Equating these terms gives 

 

giving , as stated above. 

− n 1−m2 0 l 1−m2⎛
⎝⎜

⎞
⎠⎟

n2 + l2m
1−m2

−l −nl
1+m

l m n
−nl
1+m

−n l2 + n2m
1−m2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

− n
2 + l2m
1−m2

l nl
1+m

l m n
nl
1+m

n − l
2 + n2m
1−m2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=
−1 0 0
0 1 0
0 0 −1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n2 + l2m
1−m2

−l −nl
1+m

l m n
−nl
1+m

−n l2 + n2m
1−m2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

2λ 2 −1, 2µ2 −1, 2ν 2 −1
2µ2 −1= m = cosψ

µ = cos ′ψ = m+1( ) 2 = cos ψ 2( )

tan ′ϕ = −ν
λ

= − 1− n
2 + l2m
1−m2

⎛
⎝⎜

⎞
⎠⎟

1− l
2 + n2m
1−m2

⎛
⎝⎜

⎞
⎠⎟
= −n
l

= tanϕ

′ϕ =ϕ; ′ψ =ψ 2
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If xo is a point on the rotation axis defined by rotation matrix C and translation vector d:  
  

xo = Cxo + d 
d = (I-C)xo 

 
If there is a screw component to the transformation, it needs to be taken into account in the 
transformations. 
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Strain Calculations 
 
See Diamond Acta Cryst. A32, 1-10 (1976); Yeates, T. O. & Rees, D. C. J. Appl. Cryst. 21, 925-
928 (1988). 
 
 The rigid body transformation relating two sets of points, x1 and x2, may be written: 
 

     (1) 
 
Where R is the rotation matrix (orthogonal) and d is the translation vector.  Although R and d have 
a total of 12 elements, there are only 6 independent variables; the three rotation angles and the 
three components of the translation vector.  A more general transformation can be written in the 
following form: 
 

 

 
where A' is a 4x3 matrix with 12 elements.  Although a bit odd, the particular form of this 
expression facilitates comparison to least squares problems discussed elsewhere in this document, 
where the solution of b = Ax is found to be x = (ATA)-1 ATb.  In the present case, the solution for 
A' becomes 
 

 

 
The first three rows of A' approximately correspond to RT, while the fourth row corresponds to 
the translation vector in the first expression. 
 
 Since A' has 12 independent elements, while R and d only have 6 elements, A' contains 
additional information about the superposition of two objects.  In particular, A' contains 
information not only on the rigid-body orientational relationship between two objects, but also on 
how one object must be distorted (strained) to optimize the superposition.  This could occur, for 

!
x2 = R

!
x1 + d

!x2
T = !x1

T ′A        (2)

x2,1 y2,1 z2,1

… … …
x2,N x2,N x2,N

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

x1,1 y1,1 z1,1

… … …
x1,N x1,N x1,N

1
…
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′A

′A = x1
T x1

⎡⎣ ⎤⎦
−1
x1
T x2

x1
T x1

⎡⎣ ⎤⎦ij = x1,k ,i
k=1

N

∑ x1,k , j

x1
T x2

⎡⎣ ⎤⎦ij = x1,k ,i
k=1

N

∑ x2,k , j

where xn,1,i = xn,i

xn,2,i = yn,i

xn,3,i = zn,i
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example, if two objects are protein molecules collected at different temperatures, so that some 
contraction (or expansion) has occurred; if the two objects are protein molecules in different crystal 
forms where some of the cell constants are incorrect; or if there has been some change in 
conformation between the two objects that may be represented as application of strain.  
 
 The Diamond reference describes how to extract information on both the rigid body 
rotation and strain matrices from A'.  In the terminology of that paper, the 3x3 matrix D is defined 
that contains the first three columns of [A']T.   The transpose is needed because of the differing 
forms of the two transformation expressions utilized above in equations (1) and (2). Following 
Diamond, D may be factorized as 
 

 
 
where "R is an orthogonal matrix expressing a pure rotation having three independent elements, 
and T is symmetric having six independent elements, thus providing for nine degrees of freedom 
in D."  In terms of the first transformation expression, this convention "provides for application of 
strain direct to the unrotated reference set"; ie, D represents "the application of a pure strain 
followed by the application of a pure rotation". 
 
 Now, 
 

 

 
"The conventional strain tensor, S, is then given by 
 

" 
 
"[DTD]1/2 is a matrix having the same eigenvectors as DTD and with eigenvalues equal to the 
square roots of those of DTD", ie if E and L are the eigenvectors and eigenvalues, respectively of 
DTD, then 
 

 
 
The eigenvectors and eigenvalues of S describe both the direction and the magnitude of the 
application of homogeneous strain to the entire object set.  Diamond proceeds to analyze how 
"variations of T from place to place are also of interest, and may be regarded as the causes of 
changes in orientation" in comparing different forms of an object such as a molecule. 
  
  

D = RT      (3)

DTD = T T RT RT = T TT  since  RT R = 1

however, T T = T   since T  is symmetric

∴T = DTD⎡⎣ ⎤⎦
1/2

R = D DTD⎡⎣ ⎤⎦
−1/2

S = T − I

DTD⎡⎣ ⎤⎦
1/2

= ETΛ1/2E
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Section IV:  Phasing and Phase Distributions 
Hendrickson-Lattman ABCD Coefficients 
 
 Hendrickson and Lattman (Acta Crystallogr. B26, 136 (1970)) recognized that phase 
probability curves with two or fewer maxima could be encoded in terms of 4 coefficients, A, B, C 
and D, where, in un-normalized form: 
 
  P(a) = exp(A cosa + B sina + C cos2a + D sin2a) 
 
The ABCD coefficients can be determined explicitly from the parameters of the particular source 
of phase information, or by numerical fitting of the phase probability curve.  From P(a), the best 
phase and figure of merit can be determined by numerical evaluation of the expressions: 
 

 

 
Sometimes, it is necessary to extract ABCD coefficients from m and abest.  The simplest way to 
do this is by analogy to the treatment of molecular replacement phase information in terms of only 
two coefficients, A and B: 
 

 

 
 
 

mcosα best =
cosα∫ P(α )dα

P(α )dα∫

msinα best =
sinα∫ P(α )dα

P(α )dα∫
α best = tan

−1 msinα best

mcosα best

⎡

⎣
⎢

⎤

⎦
⎥

m = mcosα best( )2 + msinα best( )2⎡
⎣⎢

⎤
⎦⎥

A = X cosα known

B = X sinα known

where X  is given by the Sim's (AC  12, 813-15 (1959)) expression:

X =
2FknownFobs
Funknown

2
 

following Bricogne AC  A32, 832 (1976), esp pp 838-839:

Funknown
2 = Iobs −ϑ Iknown  

where ϑ  is the "known" fraction of the total structure 
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The relationships between these quantities are illustrated below, courtesy of Mathematica®. 
 

 
 
  

the Sim's weight (figure of merit) is defined:

m =
I1 X( )
I0 X( )

to a reasonable approximation

m ~ 1− e− X /1.6

or
X ~ −1.6 ln(1−m)
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Probability Distributions for Heavy Atom Isomorphous Differences 
 
 If y = Yx, then the probability distributions P2(y), P1(Y) and P(x) are related by (equation 
references from Srinivasan and Parthasarathy (1976) Some Statistical Applications in X-ray 
Crystallography, Oxford:Pergamon): 

       (B.55) 

For the probability distribution of heavy atom isomorphous differences: 
 

 
, where ~ the phase difference between the protein and 

heavy atom.  P(x) is given by (eqn. B56): 

 

The probability distributions for the one heavy atom (1HA), two heavy atoms (2HA), many centric 
heavy atoms (C) and many noncentric heavy atoms (NC) per unit cell cases are given by: 
 

case P1(Y=fh) eqn. P2(y=DF) 
 

1HA  3.1  

 

2HA  3.3  

 

C  1.38   

 

NC   1.39  

 
F is the complete elliptic integral of the first kind.  The P1(Y) are normalized such that <Y2> = 1, 
while the P2(y) are such that <y2> = 1/2, since  <cos2x> = 1/2. Tabulations of the cumulative N(z) 
function, where N gives the fraction of reflections with y2 < z (with <z> = <y2> = 1) may be 
obtained from the expression: 

 

where the factor of 1/2 in the upper limit ensures that <z>=1: 
 

P2( y) = P1(Y )P(x = y / Y ) dY
Yy

upper limit Y

∫

ΔF = fh cos(Δφ)
with ΔF = y,   fh = Y , and x = cos(Δφ) Δφ

P(x) = 2
π

1

1− x2

δ (Y −1) 2
π

1

1− y2

2
π

1

2−Y 2
4
π 2

1
2
F π
2
, 2− y

2

2

⎛

⎝
⎜

⎞

⎠
⎟

2
π
e−Y

2 /2 2
π 3 e

− y2 /4 Ko
y2

4
⎛
⎝⎜

⎞
⎠⎟

2Ye−Y
2 2

π
e− y

2

N (z) = P2( y)dy
0

z/2

∫
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Due to the presence of the cos  term, there are relatively more weak DF terms compared to the 
component structure factor amplitude distribution.  Of particular interest, the NC DF distribution 
is described by exactly the same expression as for the C structure factor amplitude distribution. 
 
Mathematica® expressions: 
nnc[z_] := NIntegrate[(2/Sqrt[Pi]) Exp[-y^2], {y,0,Sqrt[z/2]}] 
nc[z_] := NIntegrate[(Sqrt[2/Pi^3])* Exp[-(y^2)/4] BesselK[0,((y^2)/4)] ,{y,0,Sqrt[z/2]}] 
n2ha[z_] := NIntegrate[(2/Pi^2) (1/Sqrt[1-m]) EllipticK[m] , {m,(1-(z/4)),1}] 
n1ha[z_] := NIntegrate [(2/Pi) (1-y^2)^(-(1/2)), {y,0,Sqrt[z/2]}] 
 
Table[nnc[z],{z,0,2,.1}] 
{0, 0.24817, 0.345279, 0.416118, 0.472911, 0.5205, 0.561422, 0.597216, 0.628907, 0.657218, 
0.682689, 0.705734, 0.726678, 0.745787, 0.763276, 0.779329, 0.794097, 0.807712, 0.820288,  
0.831922, 0.842701} 
 
Table[nc[z],{z,0,2,.1}] 
{0, 0.367807, 0.463248, 0.526186, 0.573595, 0.611637, 0.64333,  0.670402, 0.693946, 0.7147, 
0.73319, 0.749803, 0.764835, 0.778516, 0.791029, 0.802525, 0.813124, 0.822929, 0.832026, 
0.840489, 0.848379} 
 
Table[n2ha[z],{z,0.0,2,.1}] 
{0, 0.271455, 0.35285, 0.410037, 0.455443, 0.493637, 0.526878, 0.556472, 0.583247, 0.607768, 
0.630437, 0.651554, 0.671348, 0.689999, 0.707649, 0.724417, 0.740398, 0.755674, 0.770313, 
0.784374, 0.797906} 
 
Table[n1ha[z],{z,0.0,1.9,.1}] 
{0, 0.143566, 0.204833, 0.253183, 0.295167, 0.333333, 0.36901, 0.403013, 0.435906, 0.468116, 
0.5, 0.531884, 0.564094, 0.596987, 0.63099, 0.666667, 0.704833, 0.746817, 0.795167, 0.856434} 
 
Plot[{nnc[z],nc[z],n2ha[z],n1ha[z]},{z,0.0,2},PlotStyle->{{Thickness[0.006]}, 
{Thickness[0.003]},{Thickness[0.004],Dashing[{0.05,0.05}]},{Thickness[0.004], 
Dashing[{0.02,0.02}]}}] 

Δφ
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Direct Methods Notes 
 
Basic crystallographic relationships: 

 

An infinite number of "structures" or electron density maps are consistent with a given set of 
diffraction amplitudes. 
 
How is the correct phase set established? 
 1. Trial and Error - guess structure Bragg, etc. [Pauling "Stochastic method"] 
 2. Patterson methods (F2 synthesis) 
 3. Heavy atom method - Hodgkin (cholesteryl iodide; vitamin B12) 
 4. Isomorphous replacement-Hodgkin (K/Rb benzyl penicillin); Perutz (hemoglobin) 
 5. Anomalous dispersion - absolute configuration (Bijvoet)  
 6. Molecular replacement - Hodgkin (K, Na benzyl penicillin) 
 7. Noncrystallographic symmetry averaging (Rossmann & Blow) 
 8. Density modification (solvent flattening, histograph matching, skeletonization) 
 9. Direct methods 
Direct methods utilize features of the electron density to derive relationships between the 
amplitudes and phases of the diffraction pattern: 
 
Positivity of electron density:  r > 0.  For a centric structure, if both |Fh| and |F2h| are strong, F2h 
is likely to be positive, irrespective of the sign of Fh (Harker-Kasper inequalities: AC 1, 70 (1948)). 
(aside – this doesn’t look so convincing to me, unless both reflections are really strong) 
 

  

 
positivity and atomicity:  r map looks like r2 map, which leads to Sayre's equation (AC 5, 60 
(1952)): 

Fh = Fh e
iφh

ρ x( ) = 1
V

Fh
h
∑ e−2π ihx

= 1
V

Fh e
iφh

h
∑ e−2π ihx

= 2
V

Fh cos 2πhx −φh( )
h>0
∑ +

F000
V

cos 2πhx( )+ cos 2π 2hx( )    bold

−cos 2πhx( )+ cos 2π 2hx( )    thin



    

D.C. Rees  11/26/24 59 

 

 

 
This is an example of the convolution theorem (FT of the product of two functions is the 
convolution of the two Fourier transforms). 
 
 Another, related, example of atomicity and positivity is the maximization of r3 integrated 
over the unit cell to help assign phases (Stanley AC A35, 966 (1979)).  In this application, phases 
of reflections are chosen so that the integral of r3 over the cell is maximized: 
 

 

 To maximize this expression, the value of the second summation should be proportional to F(h): 
 

 

since then the overall integral is given approximately by: 
 

 

 
Unfortunately, as the size of the structure increases, the number of very strong reflections required 
to make these summations practically doable decreases to the point that these methods don't work. 
At this point, it is necessary to introduce other types of constraints. 
 
Envelopes:  A macromolecular crystal may be divided into two mutually exclusive, contiguous 
regions; the volume containing the molecule, and the solvent region of about equal volumes. The 
molecular envelope separates the two regions. To a first approximation, the solvent may be 

FT ρ2 x( )⎡⎣ ⎤⎦ = ρ2 x( )
0

1

∫ e2π ihxdx

= 1
V 2 Fk

k
∑ e−2π ikx⎡
⎣⎢

⎤
⎦⎥0

1

∫ Fl
l
∑ e−2π ilx⎡
⎣⎢

⎤
⎦⎥
e2π ihxdx

∝ FkFl e
2π i h−k−l( )x

0

1

∫ dx
l
∑

k
∑

= FkFlδ h− k − l( )
l
∑

k
∑

= FkFh−k
k
∑

∝ Fh    = Fourier Transform of ρ

ρ3(x)∫ dx = F(h)F( p)F(q)e−2π i(h+ p+q)x
q
∑

p
∑

h
∑∫ dx

= F(h)F( p)F(q)
hpq
∑ δ (h+ p + q)

= F(−h) F( p)F(h− p)
p
∑

h
∑

F(h) ≈ F( p)F(h− p)
p
∑

ρ3(x)∫ dx ≈ F(−h)F(h)
h
∑ = I(h)

h
∑
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modeled with uniform density. The existence of the solvent region places influences the diffraction 
pattern in ways which can potentially be used for phasing, as seen below.   
 
 First, the "sampling theory" is introduced.  The molecular and crystal transforms of an 
object are given by: 
 

 

 
The crystal transform is given by the molecular transform sampled at reciprocal lattice points 
(convolution theorem). 
 
 By the inverse Fourier transform: 
 

 

 
This sampling theorem permits reconstruction of the continuous molecular transform from the 
discrete, sampled crystal transform. 
 

 Now, for integer n, , so that when S equals an integer h, F(S) = F(h), and the 

value of this amplitude is independent of all other F(h)'s.   
  

F(S) = ρ(x)e2π iSx

−1/2

1/2

∫ dx

F(h) = ρ(x)e2π ihx

−1/2

1/2

∫ dx; h = integer

ρ(x) = F(h)e−2π ihx

h
∑   (neglecting the volume factor)

F(S) = F(h)e−2π ihx

h
∑

−1/2

1/2

∫ e2π iSxdx

= F(h)
h
∑ e2π i(S−h)

−1/2

1/2

∫ dx

= F(h)
h
∑ sinπ (S − h)

π (S − h)

sinπn
πn

= δ (n)
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Applications to Noncrystallographic Symmetry and Solvent Flattening: 
 

 

 
In this case, other F(h)'s contribute to F(p) in addition to the term p=h.  For example, when a=1/2, 
then for |p-h| = 0, 1, 2, 3, etc., the sinx/x term has the value 0.5, 0.319, 0, -0.106, etc., compared to 
the values 1, 0, 0, 0, ... when a =1.  This interdependence of the structure factors permits the 
estimation and refinement of phase information, which is beautifully detailed in papers based on 
Crowther's thesis work  (Acta Crystallogr. 22, 758-764 (1967); Acta Crystallogr. B25, 2571-2580 
(1969)), and by P. Main and M.G. Rossmann   (Acta Cryst. 21, 67-72 (1966)).  Another example 
of the use of envelopes to derive ab initio phase information from an eigenvector formulation is 
given in Rees, AC 46, 915 (1990). 
 
Topography of the diffraction pattern:  The sampling theory connects the crystal transform 
(sampled and reciprocal lattice points) and the molecular transform (continuous).  Knowledge of 
the molecular transform should help phase determination; for example, in a centric space group 
the nodes of the transform would separate regions with either + or - phases.  Even less information, 
such as the amplitude at half integral lattice points apparently can also provide the same 
information (Sayre AC 5, 843 (1952)).  Perhaps some relationships in the topography (peaks, pits, 
nodes and saddle points) are present? Or relationships between phases of neighboring reflections 
(a complication in this analysis is posed by the origin ambiguity).  
 
Maximum Entropy. I don't understand these; I guess maximum entropy methods should find the 
smoothest map consistent with the diffraction amplitudes. References G. Bricogne AC A46, 284, 
97 (1990); AK Livesey, J. Skilling AC A41, 113 (1985).  
 

F(S) = ρ(x)e2π iSx

−1/2

1/2

∫ dx

if ρ(x) = 0 when 
a
2
< x < 1

2

= ρ(x)e2π iSx

−a/2

a/2

∫ dx

F(S) = F(h)
h
∑ ρ(x)e2π i(S−h)x

−a/2

a/2

∫ dx

= F(h)
h
∑ sinπ (S − h)a

π (S − h)
for integer S ≡ p

F( p) = F(h)
h
∑ sinπ ( p − h)a

π ( p − h)
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Other constraints:  Any properties of the electron density, such as the histogram distribution 
(Zhang & Main, AC A46, 41, 507 (1990)) or skeletonization  (Baker et al, AC D49, 429 (1993)),  
should  impose phases constraints (if they can be applied).  An example follows: 
 
Suppose the electron density may be modeled by a Lorentzian curve, with the one-dimensional 
form: 
 

 

 
This form approximates a Gaussian-type curve often used for electron density: 
 

 
 
where the Lorentzian curve is dark, and the Gaussian curve (adjusted to equal 0.5 at x=+1) is light. 
 
 The curvature of the electron density is given by: 
 

 

 
The curvature of the Lorentzian and Gaussian curves are illustrated below: 
 

 
 
 

ρ(x) = 1
1+ x2

∂ 2ρ
∂ x2

= 8x2

1+ x2( )3
− 2

1+ x2( )2
= 6ρ2 −8ρ3
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The relationship between the curvature, r2 and r3 is true for Lorentzians in 1 to 3 dimensions: 
 

 

 
    n  a  b 
    1  6a  8a 
    2  4a  8a 
    3  2a  8a 
 

for . 

 
The utility of this relationship can be seen from taking the Fourier transform of the density 
curvature: 
 

 

 
so that the Fourier transform of the curvature is directly related to Fh. It is also related to the Fourier 
transforms of r2 and r3, which connects with Sayre's equation, and the use of triplets and quartets 
in direct methods: 
 

∂ 2ρ
∂ x2

=αρ2 − βρ3

ρ r( ) = 1
1+ ar 2

FT
∂ 2ρ
∂ x2

⎛
⎝⎜

⎞
⎠⎟
= ∂ 2ρ

∂ x20

1

∫ e2π ihxdx

= 1
V

∂ 2

∂ x2
Fk

k
∑ e−2π ikx
⎡
⎣⎢

⎤
⎦⎥0

1

∫ e2π ihxdx

= 1
V

−4π 2 k 2Fk
k
∑ e−2π ikx

⎡
⎣⎢

⎤
⎦⎥0

1

∫ e2π ihxdx

= −4π 2

V
k 2Fk e

−2π ikx e2π ihx
0

1

∫
k
∑ dx

= −4π 2h2Fh
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The right hand side of the top equations give the expression for the Fourier transform of a simple 
one-dimensional Lorentzian. 
 
 The final expression should hold for a structure composed of isolated Lorentzian scatterers. 
What about proteins? 
 
 
  

FT ρ( ) = Fh = πe−2πh

FT
∂ 2ρ
∂ x2

⎛
⎝⎜

⎞
⎠⎟
= −4π 2h2Fh = −4π 3h2e−2πh

FT ρ2( )∝ FkFh−k
k
∑ = π

2
1+ 2πh⎡⎣ ⎤⎦e

−2πh

FT ρ3( )∝ FkFlFh−k−l
k ,l
∑ = π

8
3+ 6πh+ 4π 2h2⎡⎣ ⎤⎦e

−2πh

Fh = − 1
4π 2h2

α FkFh−k − β FkFlFh−k−l
k ,l
∑

k
∑⎡

⎣
⎢

⎤

⎦
⎥
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Section V: Minimization, Maximization and Refinement 
Lagrange Multipliers and Constrained Extrema 
 
 If A is an nxn symmetric matrix, and x is an n element vector, then xTAx is a symmetric 
quadratic expression.  It is often desired to find the x vectors that correspond to extrema (such as 
the maximum) of this quadratic; to obtain meaningful solutions, it is necessary to impose 
constraints on the magnitudes of the elements of x, such as the normalization relationship xTx = 1 
(otherwise, the value of the quadratic expression can be adjusted simply by multiplying the 
elements of x by a scale factor).  The constraining relationship may be incorporated into the 
maximization equation by the use of Lagrange multipliers, so that the resulting function to be 
maximized is: 
 

xTAx - l(xTx-1) 
 
At the extrema, the derivative of this equation with respect to x vanishes. Since A is symmetric, 
the x values defining these points satisfy the eigenvalue equation: 
 

Ax = lx 
 
Optimization problems of this type can often arise in crystallography, since diffraction intensities 
and Patterson functions are symmetric quadratic functions of the electron density values. 
 
 Constraining equations of the type xTBx = 1 may be solved analogously to the generalized 
eigenvalue problem (G. Strang, Linear Algebra and Its Applications, Academic Press (1976) pp. 
248-251).  If B is positive definite, then B = WTW.  Consequently: 
 

 

 
The eigenvalues l of CTAC are the same as for the original problem Ax = lBx, and the 
eigenvectors are related by yj = W xj.  If the columns of a matrix S are given by the xj, then the 
matrices A and B are simultaneously diagonalized by the congruence transformation S, ie. STBS 
= I and STAS = L. 

Ax = λBx
= λWTWx

Let  y =Wx, then
AW −1y = λWT y

With C =W −1, and WT( )−1
= CT

CT ACy = λ y
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Least Squares in Crystallography 
 

 

 

 

 

              Linear Least Squares  
n observations fi , which depend on

m unknowns   x j .

f1 = a11x1 + a12x2 + ...+ a1mxm
.
.
fn = an1x1 + an2x2 + ...+ anmxm
            the aij  are known coefficients

In matrix notation, these equations can be written
F = AX

F =

f1
...
fn

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

       A =

a11 ... a1m

... ...
an1 anm

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

     X =

x1

...
xm

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Let V =error vector ≡  (F )obs -(F )calc

                   V = F − AX
The best least squares solution for X  minimizes V TV

Φ =V TV = (F − AX )T (F − AX )

when Φ is a minimum, ∂Φ∂ X = 0

∂Φ
∂ X = ∂

∂ X X T AT AX − X T AT F − FT AX − FT F⎡⎣ ⎤⎦
= AT AX − AT F = 0

⇒ X = (AT A)−1AT F        linear least squares solution
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Linear problems are nice, but most situations are non-linear.  To treat these problems, the problem 
is linearized by expanding the function f in a Taylor series, and truncating to first order.  
 

 

 
The application to crystallographic refinement problems is as follows: 
 

Example:  least squares scaling of two data sets
         Given two sets of structure factor amplitudes Fi  and Gi .
         What is the best scale factor α  that multiplies Gi ?

Guess  α =
Fi∑

Gi∑ ?   The least squares solution is given by:

Φ = Fi −αGi( )
i
∑ 2

∂Φ
∂α = −2 Fi −αGi( )

i
∑ Gi = 0

α =
FiGi

i
∑

Gi
i
∑ 2

fi
obs x1

0 ,x2
0 ,...( ) = ficalc x1 ,x2 ,...( )+ ∂ fi

∂ x1

x1
0 − x1( )+ ∂ fi

∂ x2

x2
0 − x2( )+ ...

x1
0 ,...= x values at the minimum of  f

x1 ,...=  current x values

fi
obs − fi

calc =
∂ fi
∂ x jj

∑ x j
0 − x j( )

Δfi =
∂ fi
∂ x jj

∑ Δx j    ⇒ this expression is linear in the shifts to x

F = AX        matrix notation - equivalent to linear LSQ
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The calculations of the necessary derivatives are performed as follows: 
 

 

 
Space group specific expressions for A and B are found in volume I of the International Tables. 
Generally, the parameters xi to be refined include coordinates, temperature factors, scale factor, 
and occasionally, occupancy. 
  

F  = vector with Fo h( ) − Fc h( )
A = matrix of derivatives 

∂ Fc(h)
∂ xi

X  = vector with shifts = AT A( )−1
AT F

where

       AT A( )
ij
=

∂ Fc(h)
∂ xih

∑
∂ Fc(h)
∂ x j

       AT F( )
i
=

∂ Fc(h)
∂ xih

∑ Fo h( ) − Fc h( )( )

need  
∂ Fc(h)
∂ xi

Fc(h) = Fc(h) eiαh

= Fc(h) cosα h + i Fc(h) sinα h

= A+ iB

Intensity I = Fc(h)
2

dI = 2 Fc(h) d Fc(h)

dI
2 Fc(h)

= d Fc(h)

now:  I = A2 + B2

dI = 2AdA+ 2BdB

d Fc(h) = dI
2 Fc(h)

= A
Fc(h)

dA+ B
Fc(h)

dB

= cosα h

dA
dxi

+ sinα h

dB
dxi
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Variance - Covariance in Least Squares Refinements 
(W.C. Hamilton Statistics in Physical Science (1964), chapter 4) 
 
Consider the system of linear equations 

 
where F is the vector of n observations,  A is the nxm matrix of known coefficients and x is the 
vector of m unknown parameters to be determined.  Ignoring weights (this is equivalent to 
assuming constant weights for each observational equation), the least squares solution is given by: 
 

 
An unbiased estimate of the variance-covariance matrix M is: 
 

 

 
VTV is the sum of the squared differences between observed and calculated values of F (which is 
the quantity minimized in the least squares refinement); the ith diagonal element of M is the 
variance in the estimated value for the ith parameter; and the off-diagonal element ij will be 
proportional to the covariance rij between the ith and jth parameters: 
 

 

If the observations are all uncorrelated (this should be a good approximation for diffraction data), 
then the weight matrix is diagonal with elements equal to the inverse of the variance for each 
observation, and the variance-covariance matrix becomes: 
 

 

 

F = Ax

x = AT A( )−1 AT F

M = V
TV

n−m
AT A( )−1

            with V = F − Ax = vector of residuals( )

M =

σ 1
2 σ 1σ 2ρ12 ...

σ 1σ 2ρ12 σ 2
2 ...

... ... ...

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ρij =
AT A( )

ij

−1

AT A( )
ii

−1
× AT A( )

jj

−1

P =

1
σ h1

2 0 0

0 1
σ h2

2 0

0 0 ...

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

M = V
T PV
n−m

AT PA( )−1
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Incorporation of Constraints in Least Squares Refinements 
 
See K.N. Raymond lectures notes from the Least Squares Tutorial held at the Spring, 1974 ACA 
meeting, and W.C. Hamilton's Statistics in Physical Science, Ronald Press (1964) for additional 
details. 
 
The least squares solution to a set of linear (or linearized) equations Ax = b is given by: 
 

 
 
where x represents either the solution vector (linear least squares) or the shift vector (non-linear 
least squares). For a crystallographic refinement, the elements of the normal matrix are given by: 
 

 

 
Assume that the n elements of x are related by a set of m constraints: 
 

 

 
The mxn matrix C summarizes all constraints imposed on the problem. 
 
As a result of the constraints, there are k = n-m linearly independent variables which may be 
designated as the k element vector v.  These are related to the n elements of x by the kxn matrix 
B: 
 

 

 
B can be defined such that v represents the first k elements of x, but any other linearly independent 
set of new variables is also acceptable. 
 
The two sets of matrix equations can be combined to give: 
 

 

 

x = AT A( )−1 ATb

AT Aij =
∂ F(h)
∂ xih

∑ ∂ F(h)
∂ x j

f1(x) = c1; f2(x) = c2; ...; fm(x) = cm

dfi =
∂ fi x( )
∂ x j

⎛

⎝
⎜

⎞

⎠
⎟

j=1

n

∑ dx j = 0

or, in matrix notation
Cdx = 0

Bx = v
Bdx = dv

B
C

⎛

⎝⎜
⎞

⎠⎟
dx = dv

0
⎛

⎝⎜
⎞

⎠⎟
≡ Qdx
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where Qij=Bij, i<k and Qij=Cij, i>k.  The nxn Q matrix will be nonsingular if both the constraints 
and new variables are linearly independent.  The reverse transformation then may be obtained: 
 

 

 
where J is the nxk matrix that gives the linear relationship between dx and dv, and is composed of 
the first k columns of Q-1; Jij=Q-1ij, j<k. 
 
The relationship between the derivatives dF/dv and dF/dx may be obtained via the J matrix: 
 

 

 
which can then be used to generate the derivatives needed to construct the normal matrix for the 
constrained least squares calculation. 
 
 For non-linear constraints, the same procedure is followed with the Cij elements being 
given by the appropriate derivative of the constraint equations. 
 
 Linear constraints of the form Cx=0 can also be incorporated into the Lagrange multiplier 
formalism described in the preceding section to find extrema of the symmetric quadratic xTAx.  
With the B matrix described above, a reduced set of variables, v may be derived from x: 
 

 

 
where J is equivalent to the nxk matrix described above that is composed of the first k columns of 
Q-1.  Incorporating this relationship into the optimization calculation gives: 
 

 

 
which can be optimized by the eigenvalue methods described earlier.  The solution vector x is then 
calculated from Jv. 
 
  

dx = Q−1 dv
0

⎛

⎝⎜
⎞

⎠⎟

dx = Jdv

∂ F
∂v

⎛
⎝⎜

⎞
⎠⎟
= J T ∂ F

∂ x
⎛
⎝⎜

⎞
⎠⎟

B
C

⎛

⎝⎜
⎞

⎠⎟
x = v

0
⎛

⎝⎜
⎞

⎠⎟

x = Jv

xT Ax − λxT x
vT J T AJv − λvT J T Jv
vT A'v − λvT B 'v
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Modeling the Correlation between Z and B in an X-ray Crystal Structure Refinement 
TM Buscagan and DC Rees  bioRxiv 2023.07.04.547724 

 
To model the relationship between Z and B, we represent a scatterer by a single Gaussian with 
atomic number Z and overall temperature factor B (Ten Eyck, Acta cryst. A33, 486 (1977)).  The 
electron density  is then described: 

Eq. 1         

with 

Eq. 2         

It is important to recognize that the B in Eq. 1 and Eq. 2 includes contributions from both the 
atomic scattering factor B0 and the isothermal temperature factor Biso, with B = B0 + Biso.   From 
Eq. 2 and  calculated with the Cromers and Mann atomic scattering factors Acta cryst. A34, 321 
(1968)) and Biso = 16 Å2, B0 is found to be approximately 8 Å2 and 6 Å2 for N and S, respectively.  
If the true Z/B for a given atom are Z1 and B1, but the refinement is conducted with Z2, the 
corresponding B2 will be shifted from the true value to compensate for the incorrect occupancy.  
We developed two simple models to capture the possible relationship between Z2 and B2: 
 
Model 1: B2 is calculated for a given Z2 such that the density at the atomic position, r(0), has the 
same value as for Z1, B1.  For a single Gaussian, this is equivalent to equating r(0) in Eq. 2 
calculated for either Z1, B1 or Z2, B2, which gives 

Eq. 3     

Eq. 4     

The ratio Z2/Z1 corresponds to the occupancy of the Z1 scatterer at the site (to within the 
approximation that the shape of the atomic scattering factor is independent of Z). 
 
Model 2: In this case, B2 is calculated for a given Z2 to minimize the square of the difference 
density over the atomic volume: 

Eq. 5    

From the condition that  at the minimum, one can derive (see notes at the end of this 

section) 

ρ r( )

ρ r( ) = Z 4π
B

⎛
⎝⎜

⎞
⎠⎟
3 2

e−4π
2r2 B

ρ 0( ) = Z 4π
B

⎛
⎝⎜

⎞
⎠⎟
3 2

Z1
B1
3 2 =

Z2
B2

3 2 ⇒ B2 = B1
Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2
3

B2,iso = B1,iso + B0( ) Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2
3

− B0

Δρ2 = ρ1 r( )− ρ2 r( )( )2
0

∞

∫ 4πr 2dr

= Z1
4π
B1

⎛

⎝⎜
⎞

⎠⎟

3 2

e−4π
2r2 B1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− Z2

4π
B2

⎛

⎝⎜
⎞

⎠⎟

3 2

e−4π
2r2 B2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

0

∞

∫ 4πr 2dr

  

∂Δρ2

∂B2

= 0
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Eq. 6    

 
The variations in B2,iso as a function of Z2/Z1 were evaluated from Eq. 4 and Eq. 6 (Figure 1). For 
these calculations, Z1 = 16 e- and B0 = 6 Å2, with B1,iso = 12.0 Å2 and 19.8 Å2 for the 7TPW and 
7TPY structures, respectively. (These B1,iso values correspond to the average B-factor for the two 
Fe sites in each structure; Appendix A.) As illustrated in Figure 1, while both Eq. 4 and Eq. 6 fit 
the refined B values reasonably well for Z2/Z1 < 1, the fit of Eq. 4 is superior over the entire range 
tested.  This was a surprising result to us, as we anticipated that the ∆r2 model would better capture 
the structure refinement process; instead, the isolated atom approximation (reflected in the upper 
limit of r = µ in Eq. 5) for a macromolecular structure refinement is evidently less accurate relative 
to the localized treatment implicit in the derivation of Eq. 4.  
 

 

 

Refined B2,iso values as a function of Z2/Z1, the ratio of the atomic number of the scatterer refined 
in the chalcogenide site (Z2) relative to Z1 = 16 (the true scatterer, sulfur), in the [4Fe:4S] cluster 
of the nitrogenase Fe protein (PDB data sets 7TPW (red circles) and 7TPY (blue circles)). The 
solid and dashed lines represent the fits to Eq. 4 and Eq. 6, respectively, with Z1 = 16 e- and B0 = 
6 Å2 for both structures, and B1,iso = 12.0 Å2 and 19.8 Å2 for the 7TPW and 7TPY structures, 
respectively. 
  

B2 = B1

Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5

2−
Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5 ⇒ B2,iso = B1,iso + B0( )
Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5

2−
Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5 − B0
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Derivation of Equation 6    
Eq. 6 can be derived from Eq. 5 as follows.  The integral and derivative were evaluated with 
Mathematica®. 

 

 
  

Δρ2 = ρ1 r( )− ρ2 r( )( )2
0

∞

∫ 4πr2dr

= Z1
4π
B1

⎛
⎝⎜

⎞
⎠⎟

3 2

e−4π
2r2 B1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− Z2

4π
B2

⎛
⎝⎜

⎞
⎠⎟

3 2

e−4π
2r2 B2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

0

∞

∫ 4πr2dr

= 2π 3 2 2Z1
2

B1
3 2 − 8Z1Z2

B1 + B2( )3 2
+ 2Z2

2

B2
3 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂Δρ2

∂B2
= 2π 3 2Z2

12Z1
B1 + B2( )5 2

− 3Z2
2B2

5 2

⎛

⎝
⎜

⎞

⎠
⎟ = 0

B2
5 2

B1 + B2( )5 2
= 3Z2
12 2Z1

= 1

2( )5 2
Z2
Z1

2( )5 2 B25 2
B1 + B2( )5 2

= Z2
Z1

2B2
B1 + B2( ) =

Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5

2B2 =
Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5

B1 + B2( )

B2 2 − Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5⎛

⎝
⎜

⎞

⎠
⎟ = B1

Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5

B2 = B1

Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5

2 − Z2
Z1

⎛
⎝⎜

⎞
⎠⎟

2 5⎛

⎝
⎜

⎞

⎠
⎟
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Section VI: Geometrical Calculations 
Geometry Overview: Polyhedra, Lines, and Planes 
 
More complete discussions of this topic are presented in Chapter 2 of Volume II of the 
International Tables, and in Chapter 2 of D.E. Sands, Vectors and Tensors in Crystallography, 
Addison Wesley (1982). 
 
Polyhedra: Euler's relation for convex polyhedra: V - E + F = 2, where V = number of vertices, E 
= number of edges and F = number of faces; the numerical constant is also known as the Eulerian 
characteristic c.  The value of c depends on the surface topology; for example, any triangulation 
of a surface on a torus has c = 0 [see C.C. Adams, The Knot Book, W.H. Freeman (1994)].  This 
may also be generalized to "the mountaineer’s equation" [H.B. Griffiths, Surfaces, Cambridge 
(1981)], with the identification V = number of peaks, E = number of passes (saddle points) and F 
= number of pits (valleys). 
 
Peaks, saddle points and valleys in electron density maps may be identified from the signs of the 
eigenvalues of the Hessian matrix defined as: 

 

When the rank of the Hessian is 3 (meaning there are three non-zero eigenvalues), peaks (maxima) 
are identified by three negative eigenvalues, while valleys (minima) have three positive 
eigenvalues.  Saddle points with two negative eigenvalues are "passes", while those with only one 
negative eigenvalue are "pales" [L. Leherte, S. Fortier, J. Glasgow, F.H. Allen, Acta Cryst. D50, 
155-166 (1994)] 
 
Volumes/Areas: The volume of a prism  (unit cell) defined by the three non-coplanar vectors a, b 
and c  is given by the triple product a x b . c. The volume of a pyramid may be calculated as (1/3) 
(base area) (altitude). 
 
The area A of a triangle with vertices xiyi is given by: 

 
The volume V of a tetrahedron with vertices xiyizi is given by: 

∂ 2ρ
∂ x2

∂ 2ρ
∂ x∂ y

∂ 2ρ
∂ x∂ z

∂ 2ρ
∂ x∂ y

∂ 2ρ
∂ y2

∂ 2ρ
∂ y∂ z

∂ 2ρ
∂ x∂ z

∂ 2ρ
∂ y∂ z

∂ 2ρ
∂ z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

A = ± 1
2

x1 y1 1

x2 y2 1

x3 y3 1



    

D.C. Rees  11/26/24 76 

 

  
Lines: The general equation for a straight line is:   

 
which can be reduced to the equivalent forms: 

 

where a and b are the intercepts of the line on the x and y axes, respectively, or: 
 

where l and m are the vector components of the normal to the line, and p is the perpendicular 
distance from the line to the origin. Conventions for the correct signs of these terms are discussed 
in the International Tables. 
 
The shortest (perpendicular) distance, P, from a line to a point (x1,y1) is given by: 

 
Where P is positive if x1,y1 is on the side of the line opposite to that containing the origin. 
 
Planes:  The general equation for a plane is: 

 
which can be reduced to the equivalent forms: 

 

where a, b, and c are the intercepts of the plane of the x,y, and z axes, respectively, or: 
 

where l, m, n are the vector components of the normal to the plane, and p is the perpendicular 
distance from the plane to the origin. 
 
The shortest distance, P, from a point to the plane is given by: 

 
The equation of a plane passing through three points is given by the determinant: 

 

  

V = ± 1
6

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

x4 y4 z4 1

Ax + By +C = 0

x
a +

y
b = 1

lx+my-p=0; l2 +m2 = 1

P = lx1 +my1 − p

Ax + By +Cz + D = 0

x
a +

y
b + z c = 1

lx +my + nz − p = 0; l2 +m2 + n2 = 1

P = lx1 +my1 + nz1 − p

x y z 1
x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

= 0
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Least Squares Plane 
 
References 
V. Schomaker, J. Waser, R.E. Marsh and G. Bergman, “To Fit a Plane or a Line to a Set of Points 
by Least Squares” Acta Cryst. 12, 600 (1959) 
C.M. Shakarji “Least-Squares Fitting Algorithms of the NIST Algorithm Testing System”  J. Res. 
NIST 103, 633-641 (1998) 
 
Consider a set of N points with coordinates  = (xi, yi, zi), with the origin defined as the centroid 
of these points (ie – so that the average value of these coordinates is (0,0,0)). To calculate the 
(unweighted) least squares plane, set up the matrix M, where the (xi, yi, zi) correspond to the rows 
of M. The eigenvector of the matrix MTM corresponding to the smallest eigenvalue defines the 
normal to the least squares plane.  The value of the eigenvalue equals the sum of the squares of the 
distances of each point from that plane.  (The eigenvector corresponding to the largest eigenvector 
is the normal to the “greatest squares plane”).   
 
To transform coordinates from the initial coordinate system to the new frame, with the z axis 
corresponding to the normal to the least squares plane, the matrix R is defined as follows. 
 
1.  let Z = the components of the eigenvector corresponding to the smallest eigenvalue 
2.  define X’ – this vector may not be perpendicular to Z, but will define the X-Z plane. 
3.  calculate Y’ = Z x X’   
4.  Y = normalized Y’ 
5.  calculate X = Y x Z 
 
so that R is defined as 

 

 
and the transformed coordinates are given by  
 
  

!x

R =
X1 X2 X3
Y1 Y2 Y3
Z1 Z2 Z3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!x ' = R!x
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Close Packing of Spheres 
 
Packing densities are evaluated for different types of close packed arrangements of spheres, with 
applications to protein crystals - bacterioferritin, light harvesting complex, Tomato Bushy Stunt 
Virus (TBSV) - as well as Membrane Protein Polyhedra (MPP). 
 
Definitions (see old Intl. Tables section 7.1, vol II) 
Vs = volume of sphere 
Vc = unit cell volume 
N = number of spheres per unit cell 
D = N/Vc = density in spheres per unit volume 
C = N*Vs/Vc  = packing density (fractional coverage of space by spheres) 
Z = number of contacts per sphere 
 
Calculations are based on spheres of diameter = 1, with volume  

 

Simple cubic packing 
all sides (a, b, c) have unit length 
Vc = 1 
C = 0.523599 
Z = 6 

 
 
 

VS =
4
3
π 1
2

⎛
⎝⎜

⎞
⎠⎟
3

= π
6
! 0.523599
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Body center cubic 
the body diagonal has length 2, or  

 
 
diameter of sphere = a / sqrt(4/3) ~ a/1.15 

 
 
 
 
 
 
Face centered cubic, or cubic close packing 
the face diagonal has length 2, or 

 

 
 
 

3a2 = 22 ⇒ a = 4 3 ! 1.15

Vc = a
3 = 4 3( )3 ! 1.0472

N = 2
C = NVs Vc ! 0.680175
Z = 8

2a2 = 22 ⇒ a = 2 ! 1.414

Vc = a
3 = 2( )3 ! 2.82843

N = 4
C = NVs Vc ! 0.74048
Z = 12
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simple hexagonal 
a = b = c = 1 

 

 
 
hexagonal close packing ( = cubic close packing) 
a = b = 1; the spacing along c can be calculated as follows; R-Q-S' are in the ab plane, and RSS' is 
normal to the ab plane, with S-S' = (2/3)1/2 representing the vertical displacement between sphere 
centers projected onto the c axis. 

 
 

 
 
 

Vc = a
3 sin120 = 0.866025

N = 1
C = NVs Vc ! 0.6046
Z = 8

Vc = abcsin120 = 2 2
3

⎛
⎝⎜

⎞
⎠⎟
1 2⎛

⎝⎜
⎞

⎠⎟
sin120 = 1.41421

N = 2
C = NVs Vc ! 0.74048
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tetragonal packing - two flavors: 
short c and long a (body-centered tetragonal) 
long c and short a (cubic-closest packing) 
 
the diagonal = 2 

 

 
the solutions must have c and a both > 1 (otherwise spheres interpenetrate) 
 
c = 1 (a = (3/2)1/2) - body centered tetragonal 

 

 
a = 1 (c = 21/2) - cubic close packing 

 

 
the packing density as a function of c is illustrated below: 
 

 
 
 
 

 
 

2a2 + c2 = 22 ⇒ c = 4 − 2a2  and a2 = 2 − c
2

2

Vc = a
2c = a2 4 − 2a2 = 2c − c

3

2
N = 2

c = 1⇒ a2 = 2 − c
2

2
= 3
2
; a = 3

2
C = NVs Vc ! 0.698132
Z = 10

a = 1⇒ c = 2
C = NVs Vc ! 0.74048
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Circumscribed Radii for Polyhedra  
from http://dmccooey.com/polyhedra/LsnubCube.html 

 
in this analysis, the edge length is set to 1 
 
tetrahedra (4 vertices):   sqrt(6)/4   ~0.612 
cube (8 vertices):   sqrt(3)/2  ~0.866 
octahedra (6 vertices): sqrt(2)/2  ~0.707 
icosahedra (20 vertices):: sqrt(10+2sqrt(5))/4 ~0.951 
 
snub cube (laevo) 
sqrt(3*(10+cbrt(199+3*sqrt(33)) +cbrt(199−3*sqrt(33))))/6     ≈1.3437133737446017013 
(cbrt = cube root) 
 
MscS - cytoplasmic domain ~ 13 nm MPP diameter ~ 2 x 1.34 x 13 = 35 nm 
 
 
Protein crystal examples 
 
Light Harvesting Complex 
PDB 1RWT, space group R32 a = 261.8 Å, c = 660.30 Å 
diameter = a = 262 Å 
for hexagonal close packing, packing along c axis = c/3 = diameter x Sqrt(2/3) = 213 Å  
213 x 3 = 641 Å (vs 660) 
[(660/3) x sqrt(3/2) = 269 Å] 
 
Kouyama (ACD 60, 803 (2004)) diameter ~ 250 Å 
PDB 1VCR, space group F23 a = 360.65 Å 
diameter = a/Sqrt(2) = 255 Å 
 
Bacterioferritin 
space group I422, a = 142.2 Å, c = 141.0 Å 
approximate as body centered cube, cell edge = diameter  x sqrt (4/3) 
diameter = 141 x sqrt(3/4) ~ 122 Å 
 
space group P6322, a = 126.1 Å, c = 188.2 Å 
a ~ diameter = 126 Å 
for hexagonal close packing, packing along c axis = c/2 = diameter x sqrt(2/3)  
diameter = (188/2) x sqrt(3/2) ~ 115 Å 
 
TBSV 
space group I23, a = 383.2 Å 
diameter = 383 x sqrt(3/4) ~ 332 Å  
(early Bernal Nature paper has a cell constant of 394 Å and diameter = 340 Å)  
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Shortest Distance from a Point to a Line  
 
A straight line in 3D may be described by the equation , where  gives the direction 
along the line and  is a point on the line.  The minimum distance d to a point  may be calculated 

by minimizing the expression  with respect to .    If the components of  
are given by (p, q, r), (x0, y0, z0) and (l, m, n), then  

 

 

 
 
 
Closest distance between two lines – derivation 1 
Let the two lines be described by the equations:   

The closest distance between these two lines may be found by minimizing  with 

respect to a and b.  

 

 
 
 

!
x = !x0 +α n̂ n̂

!
x0

!p
!x0 +α n̂−

!p( )2 α !
p, !x0 , n̂( )

α = !p − !x0( ) ⋅ n̂
d 2 = !p − !x0

2
−α 2

!y0 =
!x0 +α n̂0  and !y1 =

!x1 + β n̂1

d 2 = !y0 −
!y1( ) 2

∂ !y0 −
!y1( ) 2

∂α
= 2n̂0 ⋅

!
x0 +α n̂0 −

!
x1 − β n̂1( ) = 0

∂ !y0 −
!y1( ) 2

∂β
= −2n̂1 ⋅

!x0 +α n̂0 −
!x1 − β n̂1( ) = 0

1 −n̂0 ⋅ n̂1
−n̂0 ⋅ n̂1 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α
β

⎛

⎝
⎜

⎞

⎠
⎟ =

n̂0 ⋅
!x1 −
!x0( )

−n̂1 ⋅
!x1 −
!x0( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α
β

⎛

⎝
⎜

⎞

⎠
⎟ =

1

1− n̂0 ⋅ n̂1( )2
1 +n̂0 ⋅ n̂1

+n̂0 ⋅ n̂1 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

n̂0 ⋅
!
x1 −
!
x0( )

−n̂1 ⋅
!
x1 −
!
x0( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

d 2 = !x0 +α n̂0 −
!x1 − β n̂1( )2
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Closest distance between two lines  
At the distance of closest approach between two lines, the connecting segment is perpendicular to 
both lines: 

 

 
 
Least squares solution for point closest to a set of lines 
Let the direction of, and a point on, the ith line be denoted , respectively, and the desired 
point be denoted .  is defined such that it has the minimum sum of the squared distances to all 
the specified lines, where i indicates the specific line, and j and k are vector components, with 
1,2,3 = x,y,z.  

 

 
The is implemented in polyhedra.com, to find the origin by calculating the least squares point 
closest to the symmetry axes of different MscS molecules modeled into mpp tomograms. (note: 
the notation is slightly different, so the subscripts should be carefully checked).  To test this 
algorithm, the following model was analyzed in the program poly_test.f using 4 lines that intersect 
at (100, 100, 100) with F=0: 

!
x0 +α n̂0 + d

n̂0 × n̂1
n̂0 × n̂1

= !x1 + β n̂1

α n̂0 − β n̂1 + d
n̂0 × n̂1
n̂0 × n̂1

= !x1 −
!x0

n̂0( )x − n̂( )x cross( )x
n̂0( )y − n̂( )y cross( )y
n̂0( )z − n̂( )z cross( )z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α
β
d

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

!x1 −
!x0( )x

!
x1 −
!
x0( )y

!x1 −
!x0( )z

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

n̂i  and !xi!p !p

Φ !p( ) = di
2

i
∑ = !p − !xi( ) ⋅ !p − !xi( )− !p − !xi( ) ⋅ n̂i( )2⎡

⎣⎢
⎤
⎦⎥i

∑
∂Φ !p( )
∂ pj

= 2pj − 2xi, j − 2ni, j pk − xi,k( )ni,k
k
∑⎡

⎣⎢
⎤
⎦⎥i

∑

1− ni,1
2( )

i
∑ − ni,1ni,2

i
∑ − ni,1ni,3

i
∑

− ni,1ni,2
i
∑ 1− ni,2

2( )
i
∑ − ni,2ni,3

i
∑

− ni,1ni,3
i
∑ − ni,2ni,3

i
∑ 1− ni,3

2( )
i
∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

p1
p2
p3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1− ni,1
2( )xi,1 − ni,1ni,2xi,2 − ni,1ni,3xi,3⎡

⎣
⎤
⎦

i
∑

−ni,1ni,2xi,1 + 1− ni,2
2( )xi,2 − ni,2ni,3xi,3⎡

⎣
⎤
⎦

i
∑

−ni,1ni,3xi,1 − ni,2ni,3xi,2 + 1− ni,3
2( )xi,3⎡

⎣
⎤
⎦

i
∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟



    

D.C. Rees  11/26/24 85 

 

 
shifting x4 to (110, 111, 100) leads to the following result; the first three points still intersect at 
100,100,100, but line 4 now intersects the “ideal origin” at (100, 101, 100), and the shifted origin 
will now be along the line oriented along (1, -1, 0), shifted from the ideal origin by an amount p: 

 
 

The mean squared deviations from n1, n2, n3 and n4 are p2, p2, 2p2 and 2(1/2-p)2, respectively, 

 

and the point of intersection is found to be (99.833, 100.167, 100.) 
 
  

n1 = 1 0 0( ), x1 = 110 100 100( )
n2 = 0 1 0( ), x2 = 100 110 100( )
n3 = 0 0 1( ), x3 = 100 100 110( )
n4 = 2 2 2 2 0⎛

⎝⎜
⎞
⎠⎟ , x4 = 110 110 100( )

Φ p( ) = 6p2 − 2p +1/ 2

∂Φ p( )
∂ p

= 12p − 2 = 0⇒ p = 1/ 6

Φ 1/ 6( ) = 1/ 3; rms <d 2 >= Φ 1/ 6( ) 4 = 0.289

Φ 0( ) = 1/ 2; rms <d 2 >= Φ 0( ) 4 = 0.354
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Helix Packing Relationships 
see  A.K. Dunker and D.J. Zaleske  Biochem. J. 163, 45-57 (1977) 
 R.H. Spencer and D.C. Rees, Ann. Rev Biophys. Biomol. Struct. 31, 207 (2002) 
 
Symbols 
z direction of rotation axis (that passes through xy origin) = membrane normal 
N number of equivalent subunits 
q molecular symmetry rotation angle = 360˚/N 
h tilt angle between helix axis and membrane normal 
a angle between axes of adjacent helices 
d shortest distance between axes of adjacent helices = helix diameter 
D distance between helix axes in z=0 plane (defined below) 
r radial distance to rotation axis from helix axis point (X,Y,0) closest to adj. helix axis 
s vector along helix axis x’ between intersection with d vector and Z=0 plane 
 

 
 
 
the xy coordinate plane is oriented such that the  vector has components {0 y z}, and it need not 
be perpendicular to the radial vector, , extending to the rotation axis 
 
When the tilt angle between the membrane normal and the helix axis is h, then the components of 

 are equal to {0, sinh, cosh}. 
 
  

!x!r

x̂
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x and x' are related by a rotation of q around the z axis, or:  

 

(Note:   will give the packing angle a since it corresponds to the torsion angle defined by the 
two helix axes at the distance of closest approach, when x and x’ are both perpendicular to the 
vector between them). 
 
At the distance of closest approach between x and x’, the points are separated by a distance d in 
the direction given by the cross product of these two vectors, x x x’ that is perpendicular to both x 
and x’ (and, by this definition, the vector points from x’ towards x). 
 

 

 
The length of this vector is sina, as shown below (this is unnecessary for the proof, since the 
magnitude of the cross product is by product of the lengths of the vector (each 1) times the sine of 
the angle between the two vectors, a: 

 

 
 
 
 

x̂ ' =
cosϑ −sinϑ 0
sinϑ cosϑ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
x̂ =

− ysinϑ
ycosϑ
z

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x̂ '• x̂ = y2 cosϑ + z2 = cosα       with y2 + z2 = 1; z = cosη; y = sinη
cosα = cos2η + sin2ηcosϑ = cos2η 1− cosϑ( )+ cosϑ

ˆ′x • x̂

x̂ × x̂ ' =
x̂ ŷ ẑ
0 sinη cosη

−sinη sinϑ sinηcosϑ cosη
=

cosη sinη 1− cosϑ( )
−cosη sinη sinϑ
sin2η sinϑ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x̂ × x̂ '
2
= length2

= sin2η cos2η 1− cosϑ( )2
+ sin2ϑ⎡

⎣⎢
⎤
⎦⎥

Now   sin2η = 1− cosα
1− cosϑ

  and  cos2η = cosα − cosϑ
1− cosϑ

so x̂ × x̂ '
2
= 1− cosα

1− cosϑ
cosα − cosϑ( ) 1− cosϑ( )+ 1− cosϑ( ) 1+ cosϑ( ){ }

= 1− cosα( ) 1+ cosα{ }
= 1− cos2α
= sin2α

and 
!
d  =  

!
d
x̂ × x̂ '( )
sinα

≡ d
x̂ × x̂ '( )
sinα
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The vector s runs along x’ from the point of intersection of x x x’ to the plane z=0.  The length of 
s, |s|, gives the offset along the helix axis between the two helix-helix interfaces and may be 
calculated from the following relationships: 

    

 
(note: this gives the offset along the helix axes; in terms of the offset between the two Ca positions 
at the helix-helix interfaces, this will be reduced from |s| by twice the radius of the Ca’s from the 
helix axis divided by d, or 2•2.3/d) 
 
From the magnitudes of s and d, the values of D and r can be calculated from the following 
relationships: 

 

The distance of closest approach of the helix axis to the rotation axis occurs when the helix axis is 
perpendicular to the radial vector from the rotation axis, which is when r is along the x axis, so 
that the minimum distance is given by rcosb.  This distance may be calculated by relating the x 
and y components of the x and x' vector through the appropriate components of the d and x vector.  
The negative sign of the d components is required by the cross-product definition of the d vector: 

 

 
with: 

 

 
(since s is parallel to x') 
 
 
r and b may be determined from solving the following equation, where all the terms on the right 
hand side are known: 

cosη =
dz
s

s = 1
cosη

d sin2η sinϑ
sinα

D2 = d 2 + s2

r =
D 2( )

sin ϑ 2( )

r cos ϑ + β( ) ≡ r cosβ cosϑ − r sinβ sinϑ = r cosβ − dx + sx
r sin ϑ + β( ) ≡ r cosβ sinϑ + r sinβ cosϑ = r sinβ − dy + sy

!
d = dx dy dz{ } = d

sinα
cosη sinη 1− cosϑ( ) −cosη sinη sinϑ sin2 η sinϑ{ }

!s = sx sy sz{ } = d sin2η sinϑsinα cosη
−sinη sinϑ sinη cosϑ cosη{ }
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After suitable manipulations, the minimum distance of the surface of a helix from the rotation axis 
(given by rcosb – d/2 (the helix radius)) can be shown to be: 
 

 

The angle w formed between the two vectors d between a given helix and its two nearest neighbors 
may be calculated from the following expression where R is the molecular symmetry operator: 

 

 
after simplification in Mathematica® (helix_tilt_offset.nb), this reduces to: 
 

 

 
when the tilt angle h=0, this further reduces to 
 

 
 
as it should since this is equivalent to the angles at the vertices of a regular n-polygon. 

r cosβ
r sinβ

⎛

⎝
⎜

⎞

⎠
⎟ =

cosϑ −1 −sinϑ
sinϑ cosϑ −1

⎛

⎝⎜
⎞

⎠⎟

−1 −dx + sx
−dy + sy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

r cosβ − d
2
= d
2

tanηcotα
2

⎛
⎝⎜

⎞
⎠⎟
−1

⎛
⎝⎜

⎞
⎠⎟

cosω = −d̂ • R • d̂

R =
cosϑ −sinϑ 0
sinϑ cosϑ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

d̂ = 1
sinα

cosη sinη 1− cosϑ( ) −cosη sinη sinϑ sin2η sinϑ( )

cosω = 1−
8cos2 ϑ / 2( )

3+ cosϑ + 2cos2η sin2 ϑ / 2( )

cosω = −cosϑ
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A Mathematica® notebook to do these various calculations is produced below: 
 

 



    

D.C. Rees  11/26/24 91 

Finding the Axis that Minimizes Helical Tilt 
 
Let xi be the direction of the ith helical vector, and a be the direction (to be found) that minimizes 
the helical tilt, by maximizing the sum of the dot products between xi and a.  The components of 
a may be found as follows: 

 

 
 

  

Maximize  !xi
i
∑ • !a   subject to the constraint !a • !a = 1

with Lagrange multipliers, this becomes:

Φ = !xi
i
∑ • !a + λ !a • !a −1( )

Let  !xi = xi yi zi{ }  and !a = a b c{ }
∂Φ
∂a

= xi
i
∑ + 2λa = 0,   etc.

From the normalization condition

2λ = ± xi
i
∑⎛⎝⎜

⎞
⎠⎟

2

+ yi
i
∑⎛⎝⎜

⎞
⎠⎟

2

+ zi
i
∑⎛⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜

⎞

⎠
⎟

1
2

a = ∓
xi

i
∑
2λ

, etc.
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Angles between Planar Units in a Helix 
 
 
 

 
 
Definitions - the helix axis ( ) is oriented along the x axis.  The initial orientation of the planar 
unit is taken to be in the plane normal to the helix axis, ie, the plane normal,  , is parallel to .   
The tangent, , to the helical path projected into the plane normal to the helix axis, for the first 
unit under consideration, is  defined to be parallel to z.  The three angles a, q and w correspond to 
rotations about , y and , respectively, and have the following rotation matrices: 

 

 
 
The reference orientation of  (along the x axis) is converted into the correct orientation of the 
planar object by sequential rotations of a and q to give: 
 

 

 
The second unit in the helix is generated from the first by a rotation of w about , so that the plane 
normal for this unit has the components: 
 

 

 

ˆ n 

ˆ s 
ˆ h 

θ

α

ω

•• y

z

ĥ
n̂ ĥ

ŝ

ŝ ĥ

cosα −sinα 0
sinα cosα 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     
cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

     
1 0 0
0 cosω −sinω
0 sinω cosω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

n̂

cosθ cosα
sinα

−sinθ cosα

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cosα −sinα 0
sinα cosα 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
1
0
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ĥ

cosθ cosα
sinα cosω + sinω sinθ cosα
sinα sinω − cosω sinθ cosα

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

1 0 0
0 cosω −sinω
0 sinω cosω

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

cosθ cosα
sinα

−sinθ cosα

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Hence, the dot product between the normals to the planes of these two units in the helix is: 
 

 

 
which is equivalent to the cosine of the angle between the two plane normals. 
 
 
Mathematica®: 
 
dtor=3.1415926/180. 
rtod = 1./dtor 
 
plane[n_,omega_,theta_,alpha_] := 
  ArcCos[ Cos[n*omega*dtor]*  
  ((Sin[alpha*dtor]^2) + (Cos[alpha*dtor]^2)*(Sin[theta*dtor]^2)) 
  + (Cos[theta*dtor]^2)*(Cos[alpha*dtor]^2)  ]*rtod 
 
err[omega_,theta_,alpha_] := 
  (19.0 - plane[1,omega,theta,alpha])^2 + 
  (33.7 - plane[2,omega,theta,alpha])^2 + 
  (57.0 - plane[3,omega,theta,alpha])^2 + 
  (23.2 - plane[1,omega,theta,alpha])^2 + 
  (58.6 - plane[2,omega,theta,alpha])^2 + 
  (39.0 - plane[1,omega,theta,alpha])^2 
 
FindMinimum[err[omega,theta,alpha], 
   {omega,45.},{theta,34.},{alpha,1.}] 
{536.132, {omega -> 57.3217, theta -> 28.311, alpha -> 0.854799}} 
 
rms = Sqrt[536./6] 
9.45163 
 
  

cosθ cosα sinα −sinθ cosα⎡
⎣

⎤
⎦•

cosθ cosα
sinα cosω + sinω sinθ cosα
sinα sinω − cosω sinθ cosα

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= cosω cos2α sin2θ + sin2α( )+ cos2α cos2θ
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Useful Properties of Gaussians 
 
1-dimensional Gaussian 
 

 

 
 
3-dimensional Gaussian 
 

 

 
 
The Fourier transform of a Gaussian is a Gaussian! 
 

 

 
 
  

P1D x;µ,σ( ) = 1

2πσ 2
e
−
x−µ( )2
2σ 2

P1D x( ) ≡ 1

2πσ 2
e
− x

2

2σ 2

P1D x( )
−∞

∞

∫ dx = 1

P3D r( ) = 1

2πσ 2⎡
⎣⎢

⎤
⎦⎥
3 e

− r
2

2σ 2

P3D r( )
0

∞

∫ 4πr 2dr = 1

F1D S( ) = P1D x( )
−∞

∞

∫ e−2π iSxdx = 2 P1D x( )
0

∞

∫ cos 2πSx⎡⎣ ⎤⎦dx = e
−2π 2S2σ 2

F3D S( ) = P3D r( )
0

∞

∫
sin 2πSr⎡⎣ ⎤⎦
2πSr

4πr 2dr = e−2π
2S2σ 2
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Single Gaussian representation of electron density and the connection to the B-factor 
 
1-Dimensional 

 

3-Dimensional 

 

 
Scattering factor expressions for Gaussian atoms 
The variation in atomic scattering factors with scattering angle is often approximated by a sum of 
Gaussians: 

 where  

The Forsyth-Wells formulation (AC 12, 412 (1959))  uses N = 2. It is important to recognize that 
the fit is only over a defined range of x; as a consequence of the constant “c” term, if this type of 
expression is used out to the limit  in the absence of an overall temperature factor, the 
atomic density at the origin goes to infinity (since the FT of a delta function is a constant). 
 
If B is the overall temperature of an atom, then the atomic density corresponding to the FW 
formulation is given by the following expression 

 

 
so this is the sum of two Gaussians plus a third term corresponding to the constant “c”.  By 

comparison to the single Gaussian density for atomic densities ( ), the pre-
exponential ai terms correspond to an effective number of electrons, and the bi to the “effective 
temperature factor” for those electrons.  
 
As a first approximation, atoms may be approximated as a single Gaussian with B0 ~ 6-10 Å2. 
 
two other useful relationships: 
The projection of a Gaussian onto an arbitrary line is a Gaussian (Dunitz, 1.24) 
 

WNL’s  use of  in the derivation of the thermal factor (W.N. 
Lipscomb “X-ray crystallography”  in Techniques of Organic Chemistry, A. Weissberger, ed. Vol 
1, Part II, 3rd edition, pp. 1641-1738 (1960))  

ρ x( ) = Z 4π
B
e−4π

2x2 B

F S( ) = ρ x( )e2π iSx dx = Ze−BS2 /4
−∞

∞

∫

ρ r( ) = Z 4π
B

⎛
⎝⎜

⎞
⎠⎟

3 2

e−4π
2r2 B

f S( ) = Ze−Bsin2ϑ λ2 = Ze−BS
2 4

f x( ) = ai
i=1

N

∑ e−bix
2

+ c x = sinϑ / λ = S / 2

x→∞

ρ r( ) = 4π( )3/2 a1e
−4π 2r2 b1+B( )

b1 + B( )3/2
+
a2e

−4π 2r2 b2+B( )

b2 + B( )3/2
+ ce

−4π 2r2 B

B3/2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

f S( ) = Ze−BS 2 4

e2π iux = 1− 2π 2u2 x2 + ... ~ e
−2π 2u2 x2
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Ellipsoids, B factors and g-Tensors 
 
An ellipsoid can be represented in standard form in terms of the components along the principal 
axes by the equation: 

 

 

the volume of this ellipse = . In matrix notation, this can be more generally written as 

 
 
where A is a positive definite matrix (symmetric, determinant > 0).  When the coordinate system 
coincides with the principal axes, A is diagonal (with elements A11 =  1/a2, etc.)  If A is a non-
diagonal matrix, it can be diagonalized by the following transformation: 
 

 
 
where S is the matrix that contains the eigenvectors of A as columns, and  
 

 
 
is the transformed version of x in the coordinate system described by the principal axes x’, 
corresponding to the eigenvectors of A. 
 
Two dimensional example (aniso_vibration_ellipsoid.nb) 
 
The equation of a two-dimensional ellipsoid with major and minor axes a and b, respectively, in 
the principal axes x’ frame is given by: 

 

The area of the ellipse is . The rotation matrix R (angle f) that rotates x’ to a nonstandard 
coordinate setting x is given by the following expression (and for an orthogonal matrix ) 
 

 

 
given the expressions for R and A, Q is equal to 

x2

a2
+ y

2

b2
+ z

2

c2
= 1

4
3
πabc

!
xT A
!
x =  constant

!′x TS −1AS!′x =  constant

!′x = S −1!x

′x 2

a2 + ′y 2

b2 = 1⇒ ′!x A ′x = 1 with A =
1 a2 0

0 1 b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

πab
RT = R−1

R =
cosϕ −sinϕ
sinϕ cosϕ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

with x
y

⎛

⎝
⎜

⎞

⎠
⎟ = R

′x
′y

⎛

⎝
⎜

⎞

⎠
⎟  or 
!
x = R ′!x  and RT

!
x = ′!x

and ′!x A ′x = !xT RART !x ≡ !xTQ!x
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Using Mathematica®, the eigenvalues and eigenvectors of Q are 

 

The matrix S that diagonalizes Q contains the eigenvectors of Q 

 

from this, we see S = R = rotation that goes from the principal to the non-standard coordinate 
system (and the axes of the coordinate system are rotated in the opposite direction (I think!!). 
 
Plotting 2-D ellipses in Mathematica®: (aniso_vibration_ellipsoid.nb) 
the basic equation is of the form  

 

 
To plot an ellipse rotated +45˚ from the standard setting with the major axis along x, the following 
Mathematica® script may be used (in compressed form): 
a = 4.      asq = a^2   b = 2.  bsq = b^2    
thet = 45. Degree   cthet = Cos[thet]   sthet = Sin[thet]  
p = (bsq*cthet^2 + asq*sthet^2)/(asq*bsq)   (= 0.15625) 
q = (bsq - asq)*sthet*cthet/(asq*bsq) (= -0.09375) 
r= (bsq*sthet^2 + asq*cthet^2)/(asq*bsq) (= 0.15625) 
 
ParametricPlot[{Cos[ang]/Sqrt[p*Cos[ang]^2 + r*Sin[ang]^2 + 2*q*Cos[ang]*Sin[ang]], 
Sin[ang]/ Sqrt[p*Cos[ang]^2 + r*Sin[ang]^2 + 2*q*Cos[ang]*Sin[ang]]}, {ang, 0, 2*Pi}, 
PlotRange -> {{-5, 5}, {-5, 5}}, AspectRatio -> 1] 
 
 

Q = 1
a2b2

b2 cos2ϕ + a2 sin2ϕ b2 − a2( )cosϕ sinϕ
b2 − a2( )cosϕ sinϕ a2 cos2ϕ + b2 sin2ϕ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
a2 ,

cosϕ
sinϕ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and 
1
b2 ,

−sinϕ
cosϕ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

S =
cosϕ −sinϕ
sinϕ cosϕ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

STQS = A =
1 a2 0

0 1 b2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

px2 + 2qxy + ry2 = 1
x = Rcosϕ; y = Rsinϕ

R = 1 pcos2ϕ + 2qcosϕ sinϕ + r sin2ϕ
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General equation of an ellipse (see discussion in Wikipedia) 
 
The general equation for an ellipse in the Cartesian plane is 

 
where all the coefficients are real and .  In the example above 

 
 
Thermal Ellipsoids 
 
 If an atom vibrates around x = 0 in a harmonic potential of energy 
 

 
 
The mean square displacement of the atom <x2>  may be calculated from the Boltzmann 
distribution: 

 

and  
 

 

 

with     

 
 

Ax2 + Bxy +Cy2 + Dx + Ey + F = 0 
B2 − 4AC < 0

B2 − 4AC = 4q2 − 4pr = −4a2b2 < 0

E =α x2

x2 =
x2

−∞

∞

∫ e
−αx

2

RT dx

e
−αx

2

RT

−∞

∞

∫ dx
= RT
2α

⇒α = RT
2 x2

P x( ) = 1

2π x2
e
−x

2

2 x2

e− px
2

−∞

∞

∫ dx = π
p

, and x2

−∞

∞

∫ e− px
2

dx = 1
2p

π
p

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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Now, the observed electron density distribution around an atom is the convolution of the static 
distribution with the harmonic distribution; consequently, by the convolution theorem, the 
observed diffraction pattern is the product of the Fourier transforms for the static and harmonic 
distributions.  The Fourier transform of the static distribution is the scattering factor; the Fourier 
transform of the harmonic distribution is calculated as follows: 
 

 

 
In diffraction space S = d* = 1/d = 2sinq/l, so that 
 

 

 
in the extension to three dimensions, the probability distribution may be written in terms of the 
mean squared displacement along the principal axes <x2>, etc, to give: 
 

 

 
 
Following Dunitz (pp  44-49), an anisotropic vibration in three-dimensions  in real space (g) and 
reciprocal space (G) along the principal axes are given by: 

FB S( ) = FT P x( )( ) = 1

2π x2
e
−x

2

2 x2

−∞

∞

∫ cos 2πSx( )dx

= e
−2π 2S2 x2

with e−a
2x2

cos bx( )dx
−∞

∞

∫ = π
a
e
−b

2

4a2

e
−2π 2S2 x2

= e
−8π 2 x2 sin2ϑ /λ2

≡ e−Bsin2ϑ /λ2

⇒ B = 8π 2 x2

and  x2 = B
8π 2 = RT

2α

P xyz( ) = 1

8π 3 x2 y2 z2
e
−1

2
xTUx

where U =

1
x2 0 0

0 1
y2 0

0 0 1
z2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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In terms of components along the reciprocal axes (bi), the thermal ellipsoid T may be written: 

 

The isotropic temperature factor is given by  

 

and since 

 

 

 

the equivalent anisotropic temperature factors are  

 
 
In this formalism, the mean square amplitude in the direction of a unit vector with components l1, 
l2, l3 on the same set of reciprocal lattice vectors is given by (Dunitz, Sands pg. 78): 
 

 

 
In reciprocal space, the general expression in terms of the anisotropic temperature factor tensor is 
given by (see Dunitz; Stout and Jensen, App. F): 

 

 
 
 
 
 
 
 

g(x1x2x3) =
U1U2U3( )−1
2π( )3 2

exp − x1
2 2U1

2( )+ x2
2 2U2

2( )⎡
⎣

⎤
⎦ + x3

2 2U3
2( )⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦( )

G R1R2R3( ) = exp −2π 2 U1
2R1

2 +U2
2R2

2 +U3
2R3

2( )⎡
⎣

⎤
⎦ ≡ exp −T⎡⎣ ⎤⎦

T = 2π 2 U11h1
2b1
2 + ...+ 2U12h1h2b1b2 + ...( ) = 2π 2 Uijhihjbibj

ij
∑

G R( ) = exp −2π 2U 2R2⎡⎣ ⎤⎦ = exp −8π 2U 2 sin2ϑ λ 2⎡⎣ ⎤⎦ = exp − Bsin2ϑ λ 2⎡⎣ ⎤⎦

R2(= d*2 ) = h1
2b1
2 + ...+ 2h1h2b1 •b2 + ...

Uii =U
2  and  Uij =U

2 cos bibj( )

U 2 l1,l2 ,l3( ) = lTUl = Uijlil j
j
∑

i
∑

exp −2π 2 U11h
2a∗2 +U22k

2b∗2 +U33l
2c∗2 + 2U12hka

∗b∗ + 2U13hla
∗c∗ + 2U23klb

∗c∗( )⎡
⎣

⎤
⎦

 or exp − β11h
2 + β22k

2 + β33l
2 + 2β12hk + 2β13hl + 2β23kl( )⎡

⎣
⎤
⎦
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Matrix formulation of the thermal motion probability ellipsoids 
ORTEP manual, chapter 6 
International Tables,  (old) volume IV, pp 314 and following 
 
Let f(X) be the probability density function  of a trivariate normal (Gaussian) distribution 
 

 

 

and the thermal ellipsoid is given by the quadratic  
 
Taking the FT of f(X) gives the anisotropic temperature factor coefficient matrix B: 

 

ϕ
!
X( ) = det M −1( )⎡

⎣
⎤
⎦

1 2

2π( )3 2 exp − 1
2

!
X − X̂( )T M −1

!
X − X̂( )⎡

⎣
⎢

⎤

⎦
⎥

with M =

σ 1
2 σ 1σ 2ρ12 σ 1σ 3ρ13

σ 1σ 2ρ12 σ 2
2 σ 2σ 3ρ23

σ 1σ 3ρ13 σ 2σ 3ρ23 σ 31
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

!
X − X̂( )T M −1

!
X − X̂( )

Φ
!
T( )= exp iT T X̂ − 1

2
T T MT⎡

⎣
⎢

⎤

⎦
⎥

F
!
h( ) = f j

j
∑

!
h( )exp 2π i

!
hT X̂ j

⎡⎣ ⎤⎦exp −
!
hT B
!
h⎡⎣ ⎤⎦

with 
!
T = 2π

!
h

F
!
T( )= f j

j
∑ T( )exp 2π iT T X̂ j

⎡⎣ ⎤⎦exp − 1
2
T T B

2π 2 T
⎡

⎣
⎢

⎤

⎦
⎥

⇒ M = B
2π 2  or M −1 = 2π 2B−1



    

D.C. Rees  11/26/24 102 

Principal Components of Thermal Ellipsoids (aniso_B_Sands.nb) 

Sands, pp 72-78 – note: Sands uses b notation! 

Let G = the real space metric tensor, with Gij = ai•aj   

and T = the anisotropic temperature factor with Tij = bij   

 
The principal components of the thermal ellipsoid are given by the eigenvectors of TG, and the 
mean square displacement along these directions are the eigenvalues/2p2.   

 
As an illustration, here is the example on pp 73-74 and problem 3-33 of Sands.  A monoclinic 
crystal has unit cell dimensions a = 8.00 Å, b = 10.00 Å, c = 9.00 Å, b = 105.0˚, and values of bij 
corresponding to the following G and T matrices: 
 

 

The eigenvalues of TG are 0.4817, 0.3499, 0.1481, which correspond to root mean 
displacements along the principal directions of  0.156 Å, 0.133 Å, 0.087 Å.  The eigenvalues, in 
column form are 

 

Note: that these are in fractional coordinates, with lengths of “1”.  To reduce to vectors of length 
1 Å, these vectors are divided through by the length (in Å): 

 

These vectors are normalized (in terms of Å) and orthogonal, as shown by the following 
relationship: 

 

 

G =
64. 0 −18.63
0 100. 0

−18.63 0 81.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
T =

0.004 0.001 −0.0005
0.001 0.003 0.0007

−0.0005 0.0007 0.005

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

TG =
0.265315 0.1 −0.11502
0.050959 0.3 0.03807
−0.12515 0.07 0.414315

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v1 =
0.4460
−0.0620
−0.8929

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v2 =

0.5697
0.7799
0.2592

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v3 =

−0.7924
0.3844
−0.4736

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v̂1 =
v1

v1
TGv1( )1 2

=
0.0464
−0.0064
−0.0928

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v̂2 =

0.0631
0.0864
0.0287

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
v̂3 =

−0.1030
0.0500
−0.0616

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

v̂i
TGv̂ j = δ ij
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Ellipsoid of constant probability 
Coppens X-ray charge distribution book, Appendix C 

 
Upper limits for the constant in the ellipsoid equation that encloses a given fraction of the 
electron density may be evaluated by finding the radius r = C for which the enclosed area/volume 
inside the probability distribution is equal to the desired fraction 

 

 

 

The bounding ellipsoid is defined by the equation , where representative values of C 
are given below (ellipsoid_prob.nb) 
 

P(C) 1-D probability 2-D probability 3-D probability 
0.50 0.67449 1.17741 1.53817 
0.90 1.64485 2.14597 2.50028 

 
For the two-dimensional example, the explicit integration of the probability distribution for the 
ellipsoid in the standard setting may be shown: 
 

 

 
The factor of 4 comes from only integrating over one quadrant of the ellipse. 
 
Mathematica®:  (4./(2.*Pi*a*b))*NIntegrate[Exp[-(   x^2)/(2.*a^2)]*Exp[-(     y^2)/(2.*b^2)], {x, 
0, a*c},  {y, 0, b*Sqrt[c^2 - (x/a)^2]}]  
 

g1 x( ) = a π( )1 2 exp −ax2⎡⎣ ⎤⎦
g2 x, y( ) = a π( )exp −a x2 + y2( )⎡

⎣
⎤
⎦ = a π( )exp −ar 2⎡⎣ ⎤⎦

g3 x, y, z( ) = a π( )3 2 exp −a x2 + y2 + z2( )⎡
⎣

⎤
⎦ = a π( )3 2 exp −ar 2⎡⎣ ⎤⎦

g r( )
0

c

∫ dV = P C( )

xTUx = C 2

x2

a2
+ y

2

b2
= C 2

P C( )= 1

4π 2a2b2
exp − 1

2
x2

a2
+ y

2

b2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫∫ dxdy

= 4

4π 2a2b2
exp

0

aC

∫ − 1
2
x2

a2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

exp − 1
2
y2

b2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

b C2− x a( )2

∫ dy
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dx
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g tensors 
 
The EPR g tensor is defined in terms of the principal axes as follows: 
 

 

 
 
  

g 2 = xTGx

G =

gx
2 0 0

0 gy
2 0

0 0 gz
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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The geometry of 2Fe2S and 4Fe4S clusters 
reference: J.D. Dunitz “X-ray Analysis and the Structure of Organic Molecules” Cornell (1979), 
chapter 9 “Geometric Constraints in Cyclic Molecules” 
 
The consequences of geometric contraints on the conformations of cyclic species like the 2Fe:2S 
rhomb are beautifully articulated in the Dunitz chapter. For a 4 atom chain, the basic unit of 
structure consists of 4 points that can be considered to form an irregular tetrahedron.  Following 
Dunitz’ analysis, the separation d14 between atoms 1 and 4 will depend on the intervening 3 bond 
distances, 2 bond angles and 1 torsion angle as follows: 

 
 

 
 
Bonding between atoms 1 and 4 yields a cyclic molecule that imposes constraints on the 
geometrical parameters since d14 is now equal to the bond distance.  For an equilateral four-
membered ring (all bond distances equaling d), there are only two independent bond angles and 
the intervening torsion angle, and the symmetry of the ring must be at least C2v. These parameters 
must then satisfy the following relationship: 

 

With the handy trigonometric identity , this reduces to  

 

Note that the magnitude of the torsion angle is the same for all bonds when the bond distances are 
equal. When the bond angles are also equal, the underlying  symmetry is at least D2d, and 

 

When q = 90˚, w = 0˚ and the ring is planar (point group D4h).  As Dunitz demonstrates, even small 

deviations from q = 90˚ lead to appreciable non-planarity in the ring, since  (in 
degrees), so that a 1˚ change in q corresponds to a torsion angle change of ~ 15˚.  For cyclobutene 
with q = 88 ˚, w ~21.2 ˚. 
 
 
The non-planarity of 4-member rings can be expressed not only in terms of the torsion angle, but 
also the dihedral angle Y corresponding to the angle between the normals to planes sharing a 

d14
2 = d12

2 + d23
2 + d34

2 − 2d12d23 cosϑ2 − 2d23d34 cosϑ3 + 2d12d34 cosϑ2 cosϑ3 − sinϑ2 sinϑ3 cosω 23( )

d 2 = d 2 3− 2cosϑ2 − 2cosϑ3 + 2cosϑ2 cosϑ3 − 2sinϑ2 sinϑ3 cosω 23( )
cosω 23 =

1− cosϑ2 − cosϑ3 + cosϑ2 cosϑ3
sinϑ2 sinϑ3

tan
ϑ
2
= 1− cosϑ
sinϑ

cosω ≡ cosω 23 =
1− cosϑ2( ) 1− cosϑ3( )

sinϑ2 sinϑ3
= tan

ϑ2
2
tan

ϑ3
2

cosω = tan2 ϑ
2

ω ~15.1 δϑ( )
1
2



    

D.C. Rees  11/26/24 106 

common diagonal – either the 1 – 1’ or 2 – 2’ diagonals in the following equilateral four-membered 
ring (note the change in atom numbering) 

 
 
For simplicity, we’ll take the bond distance d as unity.  Using the law of cosines, the values of x 
and y may be derived, and z follows from the bond distance (normalization) constraint: 

 

The dihedral angle Y1 between the two planes sharing the 2-2’ diagonal (ie – the planes with atoms 
1-2-2’ and 1’-2-2’) may be illustrated as follows: 

 
The normal, n1, to the 1-2-2’ plane is given by the cross product of the 1-2 and 1-2’ bond vectors 

x2 + y2 + z2 = 1
x = sin ϑ2 2( )
y = sin ϑ1 2( )
z = 1− sin2 ϑ1 2( )− sin2 ϑ2 2( )
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For the D2d structures with all bond angles equal, we have 
 

 

 
 
  

1− 2{ } = −x y z{ }
1− 2'{ } = −x − y z{ }

1− 2{ }× 1− 2'{ } =
x̂ ŷ ẑ
−x y z
−x − y z

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

= 2yz 0 2xy{ }

n̂1 =
1− 2{ }× 1− 2'{ }
1− 2{ }× 1− 2'{ } = 1

sinϑ1

2yz 0 2xy{ }
cos

Ψ1

2
= ẑ ⋅ n̂1 =

2xy
sinϑ1

=
2sin ϑ2 2( )sin ϑ1 2( )

sinϑ1

equivalently

cos
Ψ2

2
= ẑ ⋅ n̂2 =

2sin ϑ2 2( )sin ϑ1 2( )
sinϑ2

cos
Ψ1

2
cos

Ψ2

2
=

4sin2 ϑ2 2( )sin2 ϑ1 2( )
sinϑ1 sinϑ2

=
1− cos1( )
sinϑ1

1− cos2( )
sinϑ2

 with 2sin2ϑ = 1− cosϑ( )

= tan ϑ1 2( ) tan ϑ2 2( ) = cosω  with tan ϑ 2( ) = 1− cos( )
sinϑ

⎛

⎝
⎜

⎞

⎠
⎟

with cos
Ψ1

2
=

sinϑ1

sinϑ2

cos
Ψ2

2

so cos2 Ψ1

2
=

sinϑ2

sinϑ1

cosω

cos2
Ψ
2
= tan2 ϑ

2
= cosω
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Analysis of 2Fe2S and 4Fe4S clusters – based on PDB survey conducted ~2002 
FeS_dihedral_calcs_15October2021.nb 

 
parameter 2Fe2S (obs) (calc) 4Fe4S (obs) (calc) 
Fe-S 2.227 Å  2.286 Å  
S-Fe-S (q1) 104.247 ˚  105.565 ˚  
Fe-S-Fe (q 2) 75.511 ˚  71.677 ˚  
Fe-Fe (1-1’) 2.728 Å 2.727 Å 2.676 Å 2.677 Å 
S-S (2-2’) 3.516 Å 3.516 Å 3.639 Å 3.641 Å 
w  5.346 ˚ 18.051 ˚  
y1  6.559 ˚ 21.594 ˚  
y2  3.516 ˚ 29.082   

 
Structural parameters for tetrahedrally-symmetric clusters 
Reference L.L. Tan, R.H. Holm and S.C. Lee Polyhedron 58, 206-17 (2013) “Structural analysis 
of cubane-type iron clusters” 
As described in Tan, et al., a useful reference geometry  for a [4Fe4S] cluster is the Td symmetric 
core which for [M4Q4] clusters can be described by two independent parameters m and q with  

• the M atoms at the vertices {(m, m, m), (-m, -m, m), (m, -m, -m),(-m, m, -m)}  
• the Q atoms at {(-q, -q,- q),(q, q, -q),(-q, q, q),(q, -q, q)} 

 
With M = Fe and Q = S, m and q can be calculated from equations (8) and (9) of Tan et al. 

 

where dMQ and qM = the Fe-S distance (2.286 Å) and S-Fe-S angle (105.565 ˚), respectively. 
From these relationships,  m and q are calculated to be 0.9478 Å and 1.2873 Å, respectively.  With 
these values for m and q, other geometrical parameters can be calculated from Eqs 3-13: 
 
parameter formula obs calc 
M-Q distance dMQ   2.286 Å (input)  

M…M separation  2.676 Å 2.6807 
Q…Q separation  3.639 Å 3.6409 

Q-M-Q angle qM  105.565 ˚ (input)  

M-Q-M angle qQ  71.677 ˚ 71.794 ˚ 

V(M4)    2.270 Å3 
V(M4Q4)   9.250 Å3 

 
 
 

Eq. 8 q = dMQ sin ϑM 2( ) 2

Eq. 9 m = q + dMQ 1+ 2cosϑM
⎡
⎣

⎤
⎦ 3

dMQ = 3m2 − 2mq + 3q2

dM = 2 2m

dQ = 2 2q

cosϑM = dMQ
2 − 4q2( ) dMQ2

cosϑQ = dMQ
2 − 4m2( ) dMQ2

8m3 3
V M4( )+ 4V MQ3( ) = 8qm
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Section VII: Lorentz and Polarization Factors 
 
Lorentz Factor 
J.D. Dunitz, X-ray Analysis and the Structure of Organic Molecules (1979) Cornell, pp. 281-287 
International Tables for X-ray Crystallography,  vol II, pp. 266 
 
The time that a reflection spends in the diffracting position depends on various factors such as the 
mosaic spread, beam divergence and spectral purity, as well as a geometric factor termed the 
Lorentz factor.  The Lorentz factor, L, takes into account the direction that a reflection passes 
through the Ewald sphere.  The more nearly this direction is to the normal of the Ewald sphere, 
the shorter the diffraction time; conversely, the more obliquely a reflection passes through the 
Ewald sphere, the longer it takes for the reflection to pass through.  The Lorentz factor is defined 
by angular rotation of the crystal, W, divided by the component of the reflection velocity normal 
to the Ewald sphere, vn., i.e., L = W/vn.  Reflections with relatively low vn (corresponding to oblique 
passage through the Ewald sphere), have large L.  All other factors being equal, the integrated 
intensity of a reflection that passes obliquely through the Ewald sphere will be larger, since it is in 
the diffracting position longer.  As a consequence, the measured intensity, Iobs, of a reflection needs 
to be corrected for this effect during data processing before converting to Fobs: 
 

 

 
To calculate the Lorentz factor, the following representation of the Ewald sphere is used, viewed 
down the direction normal to both the X-ray beam direction, so (coinciding with the x-axis) and 
the rotation axis (spindle), k, (coinciding with the y-axis).   This geometry is the so-called “normal-
beam method” in the International Tables, since the rotation axis is perpendicular to the incident 
X-ray beam.  The radius of the Ewald sphere is 1/l, the angle between the scattered beam, s, and 
the incident beam is 2q, the angle between the rotation axis and the diffraction vector h is y, the 
rotation angle about the spindle is f, and the angular rotation rate about the spindle, W. 
 

 
The velocity with which the tip of the reflection vector, h, moves as the spindle rotates is: 

 

Fobs
2
∝ Iobs L

d
!
h
dt

=Ω d
!
h
dφ



    

D.C. Rees  11/26/24 110 

The matrix for rotation about k is: 

 

If the starting rotation angle is arbitrarily assigned to 0˚, then the change, dh, in h for rotation by 
an amount df is given by: 

 

as df ® 0, then  

 

where the last step follows from the definition of the cross product: 

 

Hence, the velocity that the h vector moves through the Ewald sphere is given by: 

 

The component, vn, of the velocity that is normal to the Ewald sphere at h (where the normal is in 
the direction of the diffracted ray s) is given by the triple product: 
 

 

 
The triple product axb•c is equivalent to the volume of the parallelpiped defined by the vectors a, 
b and c, permuted in any fashion so as to keep the same hand, ie 

cosφ 0 −sinφ
0 1 0
sinφ 0 cosφ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

δ
!
h =

cosδφ 0 −sinδφ
0 1 0

sinδφ 0 cosδφ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
−

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

h
k
l

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

δ
!
h =

1 0 −δφ
0 1 0
δφ 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
−

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

h
k
l

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= δφ
0 0 −1
0 0 0
1 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

h
k
l

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= δφ
−l
0
h

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= δφ

!
h × k̂⎡⎣ ⎤⎦

!
h × k̂ =

x y z
h k l
0 1 0

Ω d
!
h
dt

=Ω
!
h × k̂( )

vn =Ω
!
h × k̂( )• ŝ
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Using these relationships, one can derive the following expression for vn: 

 

Hence, the Lorentz factor, L, is given by: 

 

From our definitions of angles in the Ewald sphere, this can be reduced to functions of q and y: 

 

The Lorentz factor is the reciprocal of this; neglecting l gives: 

 

Another, equivalent representation can be found as follows, using alternate angular definitions.  
Let p/2-n be the angle between the rotation axis k (perpendicular to the plane of the page/screen in 
the figure below) and the diffracted ray, s; and  let g be the projection of 2q in the xz plane: 

a × b i c = c i a × b
c × a i b = b i c × a
b× c i a = a i ⋅b× c

Ω
!
h × k̂( ) i ŝ =Ωk̂ i ŝ×

!
h( )

now, 
ŝo
λ
+
!
h =

ŝ
λ
⇒ ŝo + λ

!
h = ŝ

=Ωk̂ i ŝo + λ
!
h( )× !h( )

=Ωk̂ i ŝo ×
!
h( )

=Ω k̂ × ŝo( ) i !h
vn =Ωhz

where hz   is the component of 
!
h  along z

L = Ω
vn

= 1/ hz

h2 = hx
2 + hy

2 + hz
2

2sinθ
λ

⎛
⎝⎜

⎞
⎠⎟

2

= 2sinθ
λ

⎛
⎝⎜

⎞
⎠⎟

2

sin2θ + cos2ψ⎡⎣ ⎤⎦ + hz
2

hz =
2sinθ
λ

⎛
⎝⎜

⎞
⎠⎟
1− sin2θ − cos2ψ⎡⎣ ⎤⎦

1/2

hz =
2sinθ
λ

⎛
⎝⎜

⎞
⎠⎟
cos2θ − cos2ψ⎡⎣ ⎤⎦

1/2

L = 1

sinθ cos2θ − cos2ψ⎡⎣ ⎤⎦
1/2
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Basically, n and g are types of spherical polar angles, so that the length of hz can be expressed 
(recalling that the length of s is 1/l): 
 

 

 
 
  

hz =
1
λ
sin

π
2
−ν

⎛
⎝⎜

⎞
⎠⎟
sinγ

= 1
λ
cosν sinγ

and

L = 1
cosν sinγ
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Polarization Factor 
 
This discussion is based on the analysis of anisotropic anomalous scattering presented elsewhere 
in this document. 
 
For isotropic scattering in the absence of X-ray absorption, the effective scattering factor for a 
particular atom is given by (Templetons, 1982; Fanchon & Hendrickson, 1990; Schiltz and 
Bricogne, 2008) 
Eq. 1      
where  and  are the polarization directions of the incident and scattered wave, respectively, f0 
is the isotropic atomic scattering factor (a function of the scattering angle 2q) and P is the 
polarization factor for intensities. Hence for isotropic scattering in the absence of absorption, P is 
independent of the nature of the scatterer and the polarization correction can be applied during 
data reduction. (in this analysis, we adopt the convention of Schiltz and Bricogne (2008) for the 
ordering of the incident and scattered wave in Eq. 1; the order is switched in the earlier studies 
((Templetons, 1982; Fanchon & Hendrickson, 1990)). 
 
For calculation of polarization factors, we use the laboratory frame and define the geometry of the 
diffraction experiment so that  and  are the directions of the incident beam and the direction of 
polarization, respectively. In our typical synchrotron experiment, the crystal is rotated around the 
direction of polarization ( );  is defined from the directions of the and  axis (Figure S1). 

 
 
Figure S1. Diffraction geometry used for the polarization analysis  
 
The direction of the scattered wave, , is described according to the XDS convention by two 
angles (Kabsch, 1977, 2010): the azimuthal angle a and the polar angle b, where b = 2q, such that 
 

g = T ′p̂ ⋅ p̂( ) f0 ≡ P f0
p̂ ′p̂

ẑ x̂

x̂ ŷ x̂ ẑ

ŝ
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Eq. 3     
 
The polarization factor P for intensities is proportional to sin2d, where d is the angle between  
and  (Dunitz book) 
Eq. 4     
 
It is instructive to evaluate P for the general scattering case, defining the polarization component 
in the horizontal and vertical planes as follows: 

Eq. 5     

 
With  defined as above, the polarization along the horizontal and vertical directions is given by 

Eq. 6     

 
For unpolarized radiation, the polarization factor is the average of the components along the 
horizontal and vertical direction (Dunitz) 
 

Eq. 7     

 
PH is the polarization factor applicable to synchrotron data when the X-ray beam is 100% linearly 
polarized along the x-axis.   
 
  

ŝ = cosα sin2ϑ, sinα sin2ϑ, cos2ϑ{ }

p̂
ŝ

P ∝ sin2δ = 1− cos2δ = 1− ŝ ⋅ p̂( )2

p̂H = 1,0,0{ }
p̂V = 0,1,0{ }

ŝ
PH = 1− ŝ i p̂

H( )2 = 1− cos2α sin2 2θ
PV = 1− ŝ i p̂

V( )2 = 1− sin2α sin2 2θ

P = 1
2
PH + PV( ) = 1

2
1+ cos2 2θ( )
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Section VIII: Anomalous Scattering 
Classical Description of Scattering: Anomalous Dispersion 
References:   Eisenberg & Crothers, pp. 535-546 
  James "Optical Principles of the Diffraction of X-rays", Chap. IV 
The motion of an electron in an atom, in the presence of an electromagnetic field, may be 
classically described by Newton's second law: 

 

This equation represents a forced, damped harmonic oscillator, and has the following solution: 

 

The dipole moment of this system is given by: 
 

The amplitude, A, of the scattered wave at unit distance in the equatorial plane is given by 

 

For a free electron, .  The negative sign means that the scattered 

wave is 180˚ out of phase from the incident wave.   The scattering of a bound electron, relative to 
a free electron, is given by the scattering factor, f: 

 

m
d 2x
dt2

= forces∑

= qEoe
iωt − kx −η dx

dt
where x = position of the electron at time t

m = mass of the electron
q = charge of the electron
Eo = amplitude of the electric field

ω = frequency of electromagnetic radiation
k = force constant between electron and nucleus,

  assuming Hooke's law-type behavior
η = damping coefficient. The damping force is due to interactions

  between the electron and scattered radiation, and is proportional
  to the velocity of the electron.

x(t) =
qEo
m

eiωt

ω o
2 −ω 2 + iηω

m

where ω o
2 = k
m
= natural frequency of the electron

p = qx

A = ω 2

c2
p = q2

mc2
ω 2Eo

ω o
2 −ω 2 + iηω

m

ω o =η = 0 and A ≡ Ao = −
q2Eo
mc2

f = A
Ao

= ω 2

ω 2 −ω o
2 − iηω

m
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 (i)  , at high energies, the scattered radiation is 180˚ phase shifted from the 
incident wave at high frequencies.  This is the usual case in an X-ray diffraction experiment. 

(ii)  , at low frequencies, the oscillator and incident wave are in phase. 

(iii) , when the incident radiation is at the natural frequency of the oscillator, 

the scattered wave is 90˚ phase shifted from the incident wave. 
 
These relationships can be qualitatively established by examining the behavior of simple 
oscillating systems, such as a pendulum.  
 
In general, f is a complex number, and may be written as f = f' + if", where: 
 

 

 
The f' and f" terms have important physical significances.  f' can be shown to be related to the 
refractive index, n, and provides the dependence of n on the X-ray wavelength.  The dependent of 
f' (and n) on l is known as a dispersion relationship.  f" is an absorption term, and can be obtained 
from measurements of the absorption coefficient, µ, as a function of l.  f' and f" are not independent, 
but are related by the Kronig-Kramer's transformation (see below).  The description of systems 
near resonance by these two terms is quite general.  In optical spectroscopy, the quantities 
analogous to f' and f" are n and e.  Similar effects also provide the basis for optical activity 
measurements using optical rotatory dispersion (ORD, based on Dn) and circular dichroism (CD, 
based on De) with polarized light. 
 
Plots of f' and f" for forced, damped harmonic oscillator with with x = w/w0 and h/m = 1 
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dispersion curves for forced, damped harmonic oscillator
dispersion_classical.xls (9/24/06)
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Derivation of Kramers-Krönig (KK) Transform 
Brian Davies, Integral Transforms and Their Applications, Springer (2002) QA432 .D28 
Carrier, Functions of a Complex Variable, pp. 548 and following 
D.A.B. Miller 243. Semiconductor Optoelectronic Devices (Winter 2002) web lecture notes 
(Beware: there appears to be a fair amount of confusion about signs and the order of (w-W)) 
 
Bottom line summary of Kramers-Krönig transforms: 

 

 
Derivation: Assume we have a function f(w) (which is complex with real and imaginary parts 
f'(w) and f"(w), respectively), where f(w) is finite for all w, there are no singularities (poles) in the 
half plane Im(w) > 0, and f(w) ® 0 as |w| ® ¥ in the upper half-plane.  Then the contour integral 
equals 

 

when evaluated along the contour shown below (since the contour integral = 0 as f(w) has no poles 
inside the contour; f(w) vanishes along the outer contour and the last part comes from the residue 
theorem evaluated as one half the residue at w = W 
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Equating the real and imaginary parts of this relationship gives: 

 

where the integral denotes the "Cauchy Principal Value" which takes into account the singularity 
at w = W.   These expressions relate the real and imaginary components of f and represent one form 
of the Kramers-Krönig relations.  This specific form is also known as a "Hilbert Transform". 
 
Since r(r) is real, then f(w), the Fourier transform of r(r), has the property f(w) = f*(w) or 
 

f'(w) = f'(-w) and f"(w) = -f"(-w) 
 
These properties can be used to convert this version of the KK relations to a more familiar form 
as follows. 
 

 

 
In a similar fashion, the corresponding transform relating f" and f' may be derived: 

 

 
Some useful Hilbert transforms from http://mathworld.wolfram.com/HilbertTransform.html and, 
“Tables of Integral Transforms” A Erdélyi, editor of "Bateman Integral Project", QA351.B22 
(1954), SFL)). 
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Idealized form of ∆f', ∆f" curves (James, chapter 4, pp 146+) 
 
f" curves can be derived from the atomic absorption coefficient of different materials, which 
empirically has been found to vary above the absorption edge (wK for the K edge) as w-3 (Eq. 4.32)  

 

 
where n = 3.  ∆f" is related to  through equations 4.39 and 4.41 of James (which are referring 
to the contribution of a particular K edge to the total absorption): 
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where gK is the oscillator strength and is expected to be 2 (the number of K electrons) but is 
measured to be ~1.3.  This can be seen from the value of ∆f" = gKp at the absorption edge (x = 1) 
which is ~4 electrons at the K edge peak. 
 
For this form of the absorption spectra, ∆f' may be evaluated from the KK relation: 

 

 
The singularity in ∆f' reflects the infinitely sharp absorption peak; real systems have absorption 
peaks with finite width, which broadens the dispersion curve. In general, f' is thought to have a 
large magnitude at energies where the derivative of the f" vs energy curve is greatest (P. Fuoss 
1980 Stanford thesis, pg 74, “Since f' is commonly thought to reflect the derivative of f" we would 
expect the value of f' derived from the dispersion relation to be very sensitive to the broadening 
induced by the monochromator resolution.”).  
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Evaluation of f' from f" by the KK transform  
JJ Hoyt, D deFontaine, WK Warburton J. Appl. Cryst. 17, 344-351 (1984) 
P Dreier, P Rabe, W Malzfeldt, W Niemann J. Phys. C: Solid State Phys. 17, 3123-3136 (1984) 
G Evans, RF Pettifer J. Appl. Cryst. 34, 82-86 (2000)  program CHOOCH 
 
Evaluation of the KK transform to generate f' curves from measured values of f" is complicated 
by the singularity in the denominator.  For energies well removed from the absorption edge, values 
from quantum mechanical calculations can be used, but experimental measurements are required 
reproduce the chemical environment, oxidation state, EXAFS effects, etc. of the scatterer.  In this 
regime, the KK transform is numerically evaluated; Hoyt et al (incorporated into CHOOCH) fit 
the experimental data with a polynomial of degree 5 which is then used to evaluate the transform 
using a Taylor series expansion for f".  Dreier et al use a linear interpolation between successive 
measured values of f" at energies w1,... wn, to evaluate the integral by dividing the integration 
regions into n-1 intervals Ii,i+1(wS) that gives the contribution of that interval to f'(ws) 

 

 
with the a's and b's, the KK transform can be evaluated analytically for each interval 

 

"The complete dispersion integral is calculated simply by summation of the Ii,i+1 from i = 1 to i = 
n-1.  The integrals Is-1,s and Is,s+1 which are not defined are substituted by the integral Is-1,s+1. "  If 
the experimental data is not extrapolated to higher and lower energies outside of the measured 
region, the absolute values of the calculated f' are incorrect (by factors of 2 or more), although "in 
the centre of the integration interval the energy dependence of the fine structure is only weakly 
influenced." 
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Bijvoet Difference (Anomalous Difference) Fourier Maps 
(J. Kraut J. Mol. Biol. 35, 511-512 (1968)) 
 
When the electron density r(x) is a real function, Friedel's law is valid, so that , 

 and r(x) is given by: 

 

since cos(A-B) = cosAcosB+sinAsinB 
 
When Friedel's law breaks down, an imaginary component of r(x) is present at positions 
corresponding to absorbing atoms.  This imaginary component can be calculated by a Bijvoet-
difference or anomalous Fourier as introduced by Kraut.  We first define phases and amplitudes 
such that the corresponding electron density is identically zero based on the relationships: 

  and . 

A difference Fourier synthesis of the form 

 

will have a real part that is identically zero and an imaginary component given by: 

 

 
So, a Bijvoet difference Fourier giving the "imaginary" (ie, absorbing) scatterers can be calculated 
with a standard Fourier calculation by subtracting 90˚ from the protein phases, or equivalently by 
using  and .  This map 
will have positive peaks at the position of the scatterers if the hand (and phases) are correct; if the 
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wrong hand is used for the phase calculation, this synthesis will have negative peaks at the inverse 
positions. 
 
Now, , where |dh| and y = the amplitude and phase, respectively from 
the absorbing atoms.  (this is an approximate expression that holds when the contribution of the 
anomalous scattering to the overall scattering is small).  Substituting this expression into the 
equation for the Bijvoet difference Fourier gives: 
 

 

 
The second term is the inverse Fourier transform of the heavy atom scattering (at half-weight); the 
first term will be Fourier transform with phase  and amplitude , which should give 
rise to noise.   
 
Equivalent considerations hold for isomorphous difference Fourier maps, which will give the 
desired term (at half weight) and noise terms.  This analysis is detailed in section 11.4 of Blundell 
and Johnson (page 350); the exact expression for isomorphous difference Fouriers has three terms, 
while the approximate expression  only has two terms that correspond to 
the terms in the Bijvoet difference Fourier analysis just presented. 
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Anisotropic Anomalous Scattering 
The treatment of anisotropic anomalous scattering (AAS) is intimately coupled to the polarization 
directions of the incident and scattered wave,  and , respectively.  For isotropic scattering in 
the absence of X-ray absorption, the effective scattering factor for a particular atom is given by 
(Templetons, 1982; Fanchon & Hendrickson, 1990; Schiltz and Bricogne, 2008) 
 
Eq. 1      
 
where f0 is the isotropic atomic scattering factor (a function of the scattering angle 2q) and P is the 
polarization factor for intensities. Hence for isotropic scattering in the absence of absorption, P is 
independent of the nature of the scatterer and the polarization correction can be applied during 
data reduction. (in this analysis, we adopt the convention of Schiltz and Bricogne (2008) for the 
ordering of the incident and scattered wave in Eq. 1; the order is switched in the earlier studies 
((Templetons, 1982; Fanchon & Hendrickson, 1990)). 
 
Equation derivations and numerical computations in this section were performed with 
Mathematica®. 
 
For anisotropic scattering, the scattering factor must be described by a tensor, F 
 
Eq. 2      
 
Near an X-ray absorption edge, the tensor elements are complex with the absorption described by 
the imaginary components. The key to the AAS analysis is to evaluate the contribution of this term 
to each reflection for each absorbing atom. As emphasized by the Templetons (1982), a challenge 
to this calculation is that “To calculate the total amplitude of scattered radiation one must apply 
this equation to every combination of each polarization component of the incident ray with each 
polarization component of the scattering ray, and then combine terms with attention to polarization 
and phase”. 
 
In this analysis, we make the simplifying assumption that the X-rays are 100% linearly polarized 
in the plane of the synchrotron ring. We use the laboratory frame and define the geometry of the 
diffraction experiment so that  and  are the directions of the incident beam and the direction of 
polarization, respectively. For the experiments in this paper, the crystal is rotated around the 
direction of polarization ( );  is defined from the directions of the and  axis (Figure S1). 
This analysis of the polarization factor also appears in the section with the Lorentz factor. 

p̂ ′p̂

g = T ′p̂ ⋅ p̂( ) f0 ≡ P f0

g =T ′p̂ Φ p̂

ẑ x̂

x̂ ŷ x̂ ẑ
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Figure S1. Diffraction geometry used for the AAS analysis  
 
The direction of the scattered wave, , is described according to the XDS convention by two 
angles (Kabsch, 1977, 2010): the azimuthal angle a and the polar angle b, where b = 2q, such that 
Eq. 3     
 
The polarization factor P for intensities is proportional to sin2d, where d is the angle between  
and  (Dunitz book) 
Eq. 4     
 
It is instructive to evaluate P for the general scattering case, defining the polarization component 
in the horizontal and vertical planes as follows: 

Eq. 5     

 
With  defined as above, the polarization along the horizontal and vertical directions is given by 

Eq. 6     

 
For unpolarized radiation, the polarization factor is the average of the components along the 
horizontal and vertical direction (Dunitz) 

ŝ

ŝ = cosα sin2ϑ, sinα sin2ϑ, cos2ϑ{ }

p̂
ŝ

P ∝ sin2δ = 1− cos2δ = 1− ŝ ⋅ p̂( )2

p̂H = 1,0,0{ }
p̂V = 0,1,0{ }

ŝ
PH = 1− ŝ i p̂

H( )2 = 1− cos2α sin2 2θ
PV = 1− ŝ i p̂

V( )2 = 1− sin2α sin2 2θ



    

D.C. Rees  11/26/24 126 

Eq. 7     

 
PH is the polarization factor applicable to synchrotron data when the X-ray beam is 100% linearly 
polarized along the x-axis.  In the following analysis, we will assume that this is the case (ie - 

). 
 
In the absence of AAS, the scattering of linearly polarized radiation by an atom will also be 
completely linearly polarized, along the direction .   Following Schiltz and Bricogne (2010), 
the direction of  is obtained by projecting  onto the plane perpendicular to the scattered 
beam direction .   This can be achieved by subtracting from  the component of  that is parallel 
to ; with normalization, yielding: 

Eq. 8    

 
The polarization component of the scattered wave perpendicular to  may then be calculated: 

Eq. 9    

 
These expressions are consistent with the expected properties of  and  

Eq. 10    

 
Crystal Orientation and Anisotropic Anomalous Scattering 
Consider an axial absorber in the molecular frame  with  as the unique axis. The 
absorption tensor in the molecular frame is then given by 

Eq. 11     

 
where  and  are the components perpendicular and parallel to the unique axis, respectively. 

The transformation of  to the crystal frame  is 

Eq. 12     
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where  

Eq. 13    (with and ) 

 
 
From the above expressions for  and , the scattering factor may be calculated from  

Eq. 14     

These correspond to equations (3) and (4) in Schiltz and Bricogne (2008).  From equation (19) of 
Schiltz and Bricogne, the observed intensity for a given reflection h be may written 

Eq. 15    

 
where F(h) is the normal isotropic factor, k is the scale factor, and  
 

Eq. 16    

 
The sums in Eqs. 16 are over all atoms in the unit cell, and Oj and Tj correspond to the occupancy 
and thermal factor of the jth atom, respectively. For macromolecular structures, the contribution of 
the g^ term is typically neglected for all but the weakest reflections, due to the small number of 
anomalous scatterers in the unit cell (Schiltz and Bricogne, 2008). 
 
Calculation of g as a function of orientation of the unique axis 
For the reference (Figure S2), we start with the unique axis of an axial system aligned along the 
laboratory x axis (recalling that the x axis coincides with both the polarization direction and the 
rotation axis for data collection).  A rotation around the z axis (beam direction) by k will then shift 
the orientation of the unique axis along the direction  in the xy plane.   
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Figure S2. Definition of rotation angles describing the orientation of an axial absorption tensor 
during data collection.  
 
During data collection, the crystal is rotated around the x axis by f.  If the corresponding rotation 
matrices for these rotations about the z and x axes are defined as  and , respectively, 
then the scattering factors may be evaluated as 

Eq. 17    

with 

 

 
While these general expressions are complicated, in the limit , they reduce to 

Eq. 18    

The important points from this limiting analysis is that the first term corresponds to the orientation 
averaged scattering factor (and is independent of the rotation angle around x), while the second is 
non-zero only for anisotropic anomalous scattering (when fp  ¹ fs), and depends on both the 
orientation of the unique axis with respect to x, and the rotation angle around x. The latter effect 
was used to experimentally extract values of fp and fs by rotating around the azimuthal axis 
(Templetons (AC A42, 478 (1986)). 
 
Calculation of scattering factors as a function of orientation, rotation angle, and scattering 
direction (Eq. 14) 
To assess how the scattering factors defined in Eq. 14 depend on orientation of the unique axis, 
rotation angle and scattering direction, g and g^ were numerically evaluated using Eqs. 3, 8, 9, 11 
and 12 (Figure S2).  In these calculations, g and g^ were divided by (PH)1/2 to correspond to the 
appropriate values that would be obtained if the standard polarization correction was applied to 

Rz κ( ) Rx φ( )

g = T ˆ ′p ⋅ Rx φ( )Rz κ( )( ) ⋅Φc ⋅ Rx φ( )Rz κ( )( )T ⋅ p̂
g⊥ = T ˆ ′p⊥ ⋅ Rx φ( )Rz κ( )( ) ⋅Φc ⋅ Rx φ( )Rz κ( )( )T ⋅ p̂

Rx φ( ) =
1 0 0
0 cosφ −sinφ
0 sinφ cosφ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
	and	Rz κ( ) =

cosκ −sinκ 0
sinκ cosκ 0
0 0 1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

2θ → 0
g ~ fs cos

2κ + fp sin
2κ

g⊥ ~ fp − fs( )cosφ cosκ sinκ
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these data during data processing.  We note the cautionary remark of Fanchon and Hendrickson 
(1990) that “a single polarization factor cannot be defined and the polarization correction should 
not be applied when processing data to which this formalism is to be applied”. Nevertheless, the 
specific values of g and g^ are distributed about the average values for these parameters as a 
function of k captured in the limiting expressions for these parameters (Eq. 18). 

 
Figure S3. Variation in g and g^  for different values of k (the angle between the unique axis and 
the rotation axis (x)). For these calculations, fs and fp were set to 12 e- and 6 e-, respectively, with 
q = 10 ˚ (2q = 20˚). The black, red and blue curves correspond to a = 0, 45˚ and 90˚, respectively 
(a is the angle between the projection of the scattered wave on the plane of the detector and the x 
axis (Figure S1)). 
 
Conclusions from this analysis 
Applying the standard polarization factor in XDS approximately corrects for the a, 2q dependence 
of the scattering, as reflected in the distribution of the calculated values for g and g^ about the 
average values for these parameters as a function of k captured in the limiting expressions for these 
parameters (Eq. 18; Fig. S3). 
 
That said, neglect of the detailed orientation leads to errors of several electrons in the values of g 
that should be used in structure factor calculations for an individual reflection. 
 
Additionally, neglect of the g^  term will also likely introduce an error comparable to that of setting 
g to the average value for a particular orientation of the unique axis with respect to the rotation 
axis, since g^  exhibits similar variations about the average value (0 electrons) for this term. 
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Section IX: Non-crystalline Diffraction 
Small Angle Scattering   
 
References:  A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous  
  Bodies, Chap. 10, Freeman (1963) 
  C. Cantor & P. Schimmel, Biophysical Chemistry, Chap. 14, Freeman (1980) 
  D.A. Jacques and J. Trewhella, Protein Science 19, 642 (2010) 
   
For problems with spherical symmetry, the basic diffraction equation 

 
is most appropriately expressed in terms of the spherical polar coordinates r, f and q, where q is 
the angle between the S vector (taken as along the y axis) and the radial vector to the point x, r is 
the length of the vector, and f defines the projected angle of the radial vector in the xz plane.   
 

NOTE: it is not uncommon for the scattering variable to be defined as  !!! 

 
With this angular convention, the diffraction expression becomes: 

 

With the substitution x = cosq, the q integral can be evaluated (Cantor & Schimmel, pg. 701): 

 

From any of these expressions, the scattering from a sample of completely uniform density over 
all space, is zero, except in the forward scattering direction (S=0).  This means that only problems 
with non-uniform density (on the scale of the radiation wavelength) can be probed by diffraction 
methods. 
 
The inverse Fourier transform for a spherically symmetric system is given by  

 

(Note: there is some confusion whether the inverse FT is for a 1-D or a 3-D system (as above for 
a spherically symmetric system. This again introduces confusion (more factors of 2p, etc.)) 
 
As an example, the scattering pattern of a uniform sphere may be found by imposing the conditions 

, and evaluating the above integral to obtain: 
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!
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4π sinϑ
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∫ r2
0
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∫

= 4π r2
0

∞
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2πSr
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0

∞

∫ sin 2πSr( )dS

ρ r( ) = 1, 0 ≤ r ≤ R;ρ r( ) = 0, r > R
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The intensity of the scattered radiation is given by F2(S). The dependence of a normalized F(S) on 
the product RS of the sphere radius (R) and the reciprocal space vector (S) is shown below: 
 

   
The zeroes of this function occur at RS = 0.72, 1.23, 1.73, ...  Information about the size of a 
spherical object can be obtained from the S values where the diffracted intensity is zero. 
 
While the above expression is correct only for uniform, spherical objects, the very low resolution 
diffraction from non-spherical objects can be modeled by a similar expression. The low resolution 
dependence of the scattering expression may be determined by expanding the expression for the 
intensity = F2(S) in a power series of S, and truncating to second order (this can be easily done by 
Mathematica®): 

 

The normalized ratio I(S)/I(0)  is then given by: 

 

For non-spherical objects, the relevant radius in this expression is the radius of gyration, RG.  For 
a sphere, RG2 = (3/5)R2.  Making this substitution yields: 

 

 

  

 
Recalling that ln(1-x) ~ -x, then the small-angle scattering can be represented as: 
 

F(S) = 4π
3
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which is called a Guinier plot.  From Guinier plots, the radius of gyration of an object can be 
determined without knowledge of the molecular weight. 
 
It is sometimes useful to be able to calculate the expected small angle scattering curve from atomic 
coordinates, which can be achieved as follows.  The general diffraction expression for one 
molecule can be written: 

 

 
To calculate the spherically averaged intensity, in the absence of intermolecular interactions 
(achieved experimentally by working at sufficiently high dilution), it is necessary to average over 
all orientations, as follows: 

 

 
The average value of the exponential term can be calculated using methods introduced at the 
beginning of this section, yielding the Debye formula for the small angle scattering intensity: 

 

 
A useful relationship that can be derived from further analysis of these scattering expressions 
(following the earlier derivation of the Guinier expression) relates RG to the interatomic vectors: 
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The overall shapes of molecules can be assessed by calculating the small angle scattering for 
various models, and comparing them to the observed distribution.  Alternatively, if some estimate 
of the phases are available (by assuming, for example as in the case of a true sphere, that the sign 
of F(S) alternates +-+- for each peak), it is possible to calculate spherically averaged 
Fourier/Patterson maps, or the related radial distribution function: 

 

(Note: the equations given in Cantor and Schimmel differ from these by a factor of 1/2p since they 
are using a 1-D inverse FT, and not the 3-D form with spherical symmetry) 
 
The maximum length of a Patterson function vector (beyond which P(r) = 0) can provide a useful 
parameter for evaluating different models. For a sphere of radius R, the following relationships 
may be derived 

 

 
For further information, see the old International Tables, Vol. III (not Vol II - fixed 4/8/13) section 
5.3.4 (5.3), P.B. Moore, J. Appl. Cryst. 13, 168 (1980); Guinier and Fournet, Small-Angle 
Scattering of X-rays (1955), sections 2.1.2.2 - 2.1.2.4. 

inverse Fourier transform:
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∞
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∞
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∞
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Example:   Small Angle X-ray Scattering (SAXS) Studies of the Nitrogenase Cofactors 
  Eliezer, et al., J. Biol. Chem. 268, 20953-20957 (1993) 
 
Small angle scattering studies can provide a sensitive method for obtaining RG values, and the 
changes in these parameters as a function of environmental conditions.  A beautiful example of 
the power of small angle scattering is provided by the study of the oligomeric state of the extracted 
FeMo-cofactor in solution (where it turns out to be at least dimeric; (Eliezer, et al., J. Biol. Chem. 
268, 20953-20957 (1993))) and to study the AlF stabilized complex.  This type of information can 
be difficult to obtain by other methods, and provides important constraints for the development of 
more detailed structural models. 
 
In Figure 1 of Eliezer analysis, the RG of FeMoco(ox) is reported as 6.51 ± 0.18 at 1.93 mM.  From 
the slope of that data, with S = 2sinq/l, and Log = Ln (I think),  

 

     
 
Example: Small Angle Scattering Analysis of the Nitrogenase Complex 
  Grossmann et al. Acta Cryst. D55, 727 (1999) 
 

 
 
 
Analysis of the very low angle region (S2 < 0.00002 Å-2 or S < 0.0045 Å-1) gives RG ~ 50 Å or 
Rsphere ~ 64 Å.  A better fit is given assuming an ellipsoid of rotation with semi-axes   (a, b, c) º 
(a, a, na), with the equivalent radius of gyration to the sphere:  

 

d ln I
dS2

= − 4π
2RG

2

3
~ −7.1+ 6.8( )
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2 = 3

5
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5
a2 + b2 + c2( ) = a

2

5
2 +ν 2( )

a = 3
2 +ν 2( )Rsphere
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The scattering of an ellipsoid of revolution is given by Eq. 10.9  of Guinier  

 

where F is the Fourier transform of a uniform sphere. A similar, but simpler, expression is found 
in the International Tables, Vol II section 5.3.4.2 - these should be equivalent, but I haven't tested 
them. 

 

 
Using the Guinier expression, the best fit was obtained for n ~ 2.5 (see following), which seems 
to be a reasonable fit out to about S2 < 0.0002 Å-2.   
 
 

 
 
For comparison to the actual structure, the gyration tensor was calculated from the Ca positions of 
PDB entry 1N2C; for this calculation, the coordinates are taken relative to the center of mass of 
the structure. 
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The trace of this matrix equals RG2, and the eigenvectors and eigenvalues give the directions of the 
principal axes and the squared distance along each axis.  For 1N2C, RG = 51.4 Å, while the lengths 
of the principal axes  (square root of eigenvalues) are 45.3 Å, 17.7 Å and 16.6 Å, which gives an 
axial ratio of ~45/17 = 2.65, close to the values from the SAXS analysis.  A direct calculation of 
RG from the coordinates using the equation  

 

gives RG ~ 51.3 Å, with a maximum distance of 187 Å.  A crude numerical integration of the n2ase 
saxs data gives a radial Patterson with a maximum distance ~ 170 Å. 
 

 

RG
2 = 1

N 2 rnm
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 Diffraction Pattern of Helical Structures 
 
References: W. Cochran, F.H.C. Crick, V. Vand, Acta Cryst. 5, 581-586 (1952) 
  W.N. Lipscomb, Lecture Notes (1975) 
  C. Cantor & P. Schimmel, Biophysical Chemistry, Chap. 14, Freeman (1980) 
  S. Arnott, Trans. Am. Cryst. Assoc. 9, 31-56 (1973) 
  A. Klug, F.H.C. Crick, H.W. Wyckoff,  Acta Cryst. 11, 199-213 (1958) 
  R. Langridge et al, J. Mol. Biol. 2, 19—36 and 38-64 (1960)  
         Appendix pp 63-64 “Calculation of Fourier Transform of a Helical Molecule” 
  C. Kittel,  Am. J. Physics 36, 610 (1968) 
 
 A continuous wire helix of infinite length, radius a and axial repeat (pitch) P is defined by 
the equations: 

 

 
The helix repeats when z = ..., -2P, -P, 0, P, 2P,.... Below are illustrated figures showing the helix 
in three dimensions and in a two-dimensional projection.  The later emphasizes the two sets of 
prominent average planes of approximate slope +P/2pa, which give rise to two prominent lines of 
diffraction intensities in reciprocal space.  These latter liens have slopes 2pa/P, since they are 
perpendicular to the sets of planes in the helix projection.  Qualitatively, the slopes of these lines 
in the diffraction pattern of a helix provides the ratio of the helix pitch to radius. ((Figure from 
W.N. Lipscomb, lecture notes, ca. 1975) 
 

 
In terms of a reciprocal space coordinate system defined by three orthogonal coordinates x,h,z, the 
fundamental diffraction equation becomes: 

 
where the integral is taken over the helical path.  Converting to the parametric expression for the 
helix, this may be written ("apart from unimportant constants of proportionality"): 

 

x = acos 2π z P( )
y = asin 2π z P( )
z = z

∓

F ξηζ( ) = e2π i ξx+ηy+ζ z( )∫ dxdydz

F ξηζ( ) = e2π i ξacos 2π z/P( )+ηasin 2π z/P( )+ζ z( )

0

P

∫ dz
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Converting to the cylindrical coordinates R,y,z in reciprocal space, with R2 = x2+h2, cosy = x/R, 
and siny = h/R, this expression may be rewritten as: 

 

Since the helix repeats after a distance P along z, the diffraction pattern in reciprocal space will be 
non-zero only for those planes where z = n/P: 

 

This integral may be evaluated from the identity: 

 

by taking X = 2pRa and f = 2pz/P.  Jn(X) is the nth-order Bessel function of the first kind, or the 
Bessel function.  Bessel functions typically arise in problems with cylindrical symmetry.  Values 
of Jn(X) for 0 < n < 10 and 0 < x < 15 are illustrated below (generated with Mathematica®): 
 

 
  

F Rψζ( ) = e
2π i Racos 2π z

P
−ψ⎛

⎝⎜
⎞
⎠⎟+ζ z

⎛
⎝⎜

⎞
⎠⎟

0

P

∫ dz

F Rψ n
P

⎛
⎝⎜

⎞
⎠⎟ = e

2π i Racos 2π z
P

−ψ⎛
⎝⎜

⎞
⎠⎟+
nz
P

⎛
⎝⎜

⎞
⎠⎟

0

P

∫ dz

Jn (X) =
1
2π in

eiX cosφeinφ
0

2π

∫ dφ



    

D.C. Rees  11/26/24 139 

With this identity, it can be shown that  

 
This expression gives the amplitude and phase of the X-ray scattering on the nth layer line.  The 
amplitude (Jn(2pRa)) is independent of y, and hence the diffraction pattern has cylindrical 
symmetry.  The positions of the first (and largest) maxima of Jn satisfy the approximate expression 
2pRa = n, so that for a particular n, the Bessel function maximum occurs at R ~ n/2pa.  The slope 
of the line defined by these maxima then has the value (n/P)/R = 2pa/P, consistent with the simple 
analysis presented above. Hence, the transform of a continuous helix consists of a series of layer 
lines, with the maxima forming the characteristic "X".  No reflections exist along the meridian, 
except for the origin, since Jn(0) = 0, except when n = 0. (Figure from W.N. Lipscomb, lecture 
notes, ca. 1975).  A Mathematica® script for generating the diffraction pattern of a continuous helix 
follows (displaying the amplitude of the diffraction pattern, rather than the amplitude squared): 
 

  
 
For the purposes of this calculation, the nth layer lines are specified using a narrow Gaussian 

defined as , where the breadth is given by 1/(3P). 
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The next simplest type of helix, the rational discontinuous helix, is defined as a set of points 
separated by a vertical spacing p on a continuous helix, that have an exact repeat after an integral 
number of turns, t. Let u = the number of units in t turns, and c = up = tP be the repeat distance 
along z.  The periodicity of the structure along the z direction gives a set of regularly spaced units 
separated by intervals of p, and hence gives rise to a non-zero diffraction planes with z values = 
m/p, where m can have any integer values.  Hence, this structure can be thought of as the product 
of the helix times a function that is zero, except when z is an integer multiple of p.  The diffraction 
pattern of this collection can be obtained by application of the Fourier convolution theorem, that 
states the Fourier transform of the product of two functions is the convolution of the transforms of 
the two functions.  Hence, in this case, the overall diffraction pattern reflects the convolution of 
the helical transform with the transform of the function that is zero, except for z=mp.  This means 
that the diffraction pattern is generated by putting down images of the transform of a continuous 

helix, , separated by intervals of m/p along z.  This behavior is then responsible for the 

characteristic double X pattern that is observed for helical polymers such as DNA.  As a result of 
the convolution, diffraction is only observed on layer lines defined by the expression: 

 

When these conditions are satisfied, the transform of the rational, discontinuous helix becomes:  
 

Now, if P/p cannot be expressed as a ratio of whole numbers (the so-called irrational, discontinuous 
helix), then these planes will fill the whole of reciprocal space.  In the rational case, however, P/p 
can be expressed as the ratio of whole numbers, and the transform is confined to a series of planes 
that satisfy the following relationship, where l is any integer: 

 

 
To calculate the Fourier transform from the j atoms in a helical molecule of real space coordinates 
Rj, fj, Zj, the following equation is used (R. Landgridge, et al, in the Appendix of J. Mol. Biol. 2, 
63-64 (1960)): 

 

where n is defined as the integral solution: 

 

 
An illuminating representation of helical (and other) diffraction patterns may be found in Harburn, 
Taylor and Wells, Atlas of Optical Transforms, Cornell (1975). 
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The DNA double helix provides a qualitatively straightforward case of extracting information of 
the helical geometry from a fiber pattern.  In this case, p = 3.4 Å, P = 34 Å = c, u = 1 helix 
turn/repeat, and t = 1 helix turn/repeat.  Hence, layer lines occur at spacings that satisfy the integer 
relationship n + 10m = l.  For l = 0, this corresponds to n values = ..., -10, 0, 10, ...; for l = 1, n = 
... -9, 1, 11, ..., etc.  The difference between successive values of n will always be 10.  A meridonal 
reflection will occur at 1/3.4 Å-1, which is the tenth layer line.  Hence, from qualitative inspection 
of the fiber diffraction pattern, one can deduce that the helix repeat is P = 34 Å formed by 10 units 
separated by p = 3.4 Å, with a radius of ~7.3 Å derived from the helical slope of ~1.35.  Photograph 
51 of B-form DNA recorded by Franklin and Gosling (Nature 171, 740 (1953))  is depicted below 
showing these features (as near as I can tell, this photo is not subject to copyright). Note that no 
significant reflections are present on the 4th layer line, which is indicative of the double helix as 
discussed in the next section. 
 

 
Diffraction patterns from other helical polymers, such as the a-helix formed by poly L-methyl 
glutamate, can be more complex. In the a-helix case, since the helix repeats after 5 helical turns 
formed by 18 residues, P = 5.4 Å, p = 1.5 Å, P/p = 18/5 and the layer lines occur when l = 5n + 
18m. Hence, when l = 0, n=-18, 0, 18, ...; l = 1, n=-7, 11, ... etc.  Since Jn tends to be small for 
large n and large arguments, 'layer lines to which only high-order Bessel functions contribute will 
be weak or absent, and those to which low-orders contribute will be strong', so that, at least for 
simple helical polymers, one typically observes only those layer lines for which n < ~5. 
 
Often, the fiber needs to be tilted so that the meridonal reflection can contact the Ewald sphere and 
hence be visible in the diffraction pattern.  For example, an a-helix fiber needs to be rotated in the 
X-ray beam to see the meriodonal reflection at 1/p = (1.5 Å)-1; a fascinating account of this is 
provided by Perutz in his book “I Wish I’d Made You Angry Earlier” – this particular reflection 
was critical to establishing the rise per reside in the a-helix, but was experimentally missed until 
he rotated the fiber by 31˚ (= sin-1(l/(2x1.5)), for l = 1.54 Å (Cu Ka)) 
 
An informative discussion of fiber diffraction applied to biopolymers may be found in Saenger 
Principles of Nucleic Acid Structure, Springer (1984). 
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Computational Background to Fourier Transforms and Helical Diffraction 
J.W. Goodman Introduction to Fourier Optics McGraw Hill (1968) (later editions available) 
J.W. Goodman Fourier Transforms Using Mathematica SPIE (2020) ISBN: 9781510638556 

(the version of this informative book that I use is a Mathematica® notebook) 
Lucas et al. “Revealing the backbone structure of B-DNA from laser optical simulations of Its X-

ray diffraction pattern” J. Chem. Ed. 76, 378 (1999)  
Thompson et al. “Rosalind Franklin’s X-ray photo of DNA as an undergraduate optical diffraction 

experiment” Am. J. Phys. 86, 95 (2018) 
 
 
Preliminaries 
Calculations are in the Mathematica® notebooks slit.nb and DNA_helix.nb.  The Fraunhofer 
approximation can be used to calculate the diffraction pattern (F(sx,sy)) of an object (r(x,y)) at a 
sufficiently long distance from that object when illuminated with plane waves. 

 

 
If a is the dimension of the scattering object, then the Fraunhofer condition is that a2/(dl) << 1. 
For an X-ray scattering experiment with a ~ 100 Å, d ~ 10 cm = 109 Å, l ~ 1 Å, this ratio ~ 10-5.  
(As a working hypothesis, I think this is equivalent to assuming that the Ewald sphere is flat, and 
that the diffraction pattern is equivalent to the Fourier transform of the projection perpendicular to 
the beam.) 
 
The normalized Fourier transform of a two-dimensional slit may be calculated (with ld  º 1) 

 

in the limit b ® 0 (ie – generating a line segment along the x axis) 

 

In the limit a ®  ¥, this expression goes to 0, except in the limit sx ® 0, when this expression goes 
to 1, so that 

 

The Fourier transforms of line segments between ±10 and ±1000 along x may be calculated: 

F sx , sy( ) = ρ x, y( )∫ exp −2π i
λd

sxx + syy( )⎡
⎣⎢

⎤
⎦⎥
dxdy

F sx , sy( ) = 1
4ab

ρ x, y( )exp 2π i sxx + syy( )⎡⎣ ⎤⎦dx
−a

+a

∫
−b

+b

∫ dy =
sin 2πasx[ ]sin 2πbsy⎡⎣ ⎤⎦

4π 2absxsy

F sx , sy( ) = sin 2πasx[ ]
2πasx

F sx , sy( ) = exp 2π isxx[ ]dx
−a

+a

∫ = 0, 		sx ≠ 0; 			 = 1, 		sx = 0
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The Fourier Transform of a line through the origin described by the equation y = mx is given by 
(normalizing the contributions of sx and sy in the exponential): 

 

which in the limit a ®  ¥ is non-zero along the perpendicular to the line y = mx. 
 
The normalized interference function corresponding to the translations of an object at regular 
spacings along the y axis given by:  -nb, -(n-1)b, ..., -b, 0, +b, ..., +(n-1)b, +nb, is 

 

Helical diffraction approximations 
For these calculations, dimensions approximately appropriate to B-form DNA are utilized, with 
radius R = projection half-length a = 10 Å, pitch = 34 Å, rise per residue = 3.4 Å, slope = (P/2)/(2a) 
= P/(4a) = 0.85  
 
 “zig-zag” 

 
The Fourier transforms with 1 and 11 repeating units (left and right figures, below), respectively, 
illustrate the characteristic “X” shaped where the slope of the arms is related to the slopes of the 

F sx ,sy( ) = ρ x, y( )exp −2π i
sxx + sy (mx)

1+m2
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

−a

+a

∫ =

sin 2πa
sx +msy
1+m2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2πa
sx +msy
1+m2

⎛

⎝⎜
⎞

⎠⎟

Φ n,b,sy( ) =
1+ 2 cos 2π kbsy( )

k=−n

k=+n

∑
2n+1
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zig-zag (equal to -1/m).  When multiple helical units are present, the continuous transform is 
sampled along discrete lines spaced by 1/P ~ 0.0294 

 
Transform of a continuous helix 
When the helical axis is in the plane of the page (oriented vertically along y), the x coordinate is 
given by Rsin (2py/P), so that the Fraunhofer diffraction pattern from one helical turn is: 

 

The convention adopted here is that x = 0 when y = 0 in an attempt to put an inversion center at 
the origin.  This expression is equivalent to the general scattering expression for a continuous helix 
derived in the previous section from Lipscomb’s notes (except that the axes are defined differently) 
 
The calculated patterns for 1 and 11 helical turns (left and right, respectively) are illustrated below: 

 
 
Transform of a discontinuous helix 
In this case, the integral for a continuous helix is replaced by a summation over discrete points 
spaced by 3.4 Å (P/residues per turn = 34 Å/10) along the helix axis (y). As show below (left; 
calculated for a helix extending from -5 to +5 turns from the reference orientation), this yields the 
characteristic meridional reflection at 3.4 Å (at ~0.29 Å-1) resolution dominating the 10th layer line. 
For the B-form DNA double helix, a second strand is present, displaced by ~3P/8 or 12.8 Å along 
the helix axis (and of opposite polarity, which is irrelevant to this example).  Inclusion of this term 
leads to disappearance of the 4th layer line (right). 
 

F sx , sy( ) = exp −2π i sx ⋅Rsin
2π y
P

+ syy
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dy

0

P

∫
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Reading images into Mathematica 
Mathematica® is great not only for calculating Fourier transforms of functions, but also of input 
images.  Basic commands are detailed in the Goodman book; a summary follows 
 
img = ColorConvert[Import["~/Dropbox/FourierTransform_images/duck_text.tiff"],  "Grayscale"] 
Information[%] 
ImageHistogram[img] 
 
(* extract out the color part (3rd element, #1 = b/w *) 
data = ImageData[img]; 
d = data[[All, All, 1]]; 
Image[d]  (* displays figure *) 
Dimensions[d] 
 
 
color scale white black 
gray scale 1 0 
byte 255 0 

 
dimensions of data array = (ncol,nrow) º (x,y) 

 
 
 


