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Problem Set 1. Fourier Transforms, Symmetry, Reindexing and Lattices 
 
A.  Fourier Transforms 
 
1.  Evaluate analytically the scattering pattern for the following one-dimensional objects, 
using the relationship: 
 

     

where  is the one dimensional electron density and S  is the diffraction 
vector. 

  
 

 
 

Note: this integral may be helpful:  

 
2. The scattering pattern from a spherically averaged, three dimensional object is given by: 
 

     

  
Evaluate the scattering factor for a hydrogen atom as a function of S , given 
that the electron density (square of the wavefunction) for a 1s electron is given by: 
 

     

 

F(S) = ρ(x)e2π iSx
−∞

∞

∫ dx

ρ x( ) = 1 d = 2sinϑ λ( )

ρ(x)

1

0-a/2 +a/2
x

(a)
ρ(x)
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x

(b)

ρ(x)

1
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(c)

b-a/2 b+a/2
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epx
a

b

∫ dx = 1
p
epb − epa( )

F(S) = 2
S

rρ(r)sin(2πSr)
0

∞

∫ dr

= 1 d = 2sinϑ λ( )

ρ(r) = e
−(2r/a)

πa3



D.C. Rees          11/27/24 
 

4 

where a = 0.529Å, the Bohr radius.  From this expression, calculate the value of the hydrogen 
scattering factor at  S = 0.0, 0.2, 0.4, and 1.0 Å-1.  For comparison, the corresponding hydrogen 
scattering factor values calculated from an accurate Hartree-Fock level wavefunction are 1.0, 
0.811, 0.481 and 0.071 electrons (see Table 6.1.1.1. (pg 477) of Intl. Tables Vol. C).   
 
The following definite integral may be helpful: 

 

 
3. Show that F(h,k,l) = F(-h,k,-l) in space group P2, with equivalent positions (x,y,z) and     
(-x,y,-z).  What is the relationship between F(h,k,l) and F(-h,k,-l) in space group P21 (equivalent 
positions (x,y,z) and (-x,y+1/2,-z)? 
 
4. Show that  F(0,k,0) vanishes when k is odd for a structure in space group P21. 
 
5. Write out the three rotation matrices Ri corresponding to the symmetry operators of space 
group P3.  Show that these operations form a group by evaluating all the matrix products (Ri*Rj, 
i,j = 1,2,3) and show that the products all belong to this set. 
 
B. Reindexing and Equivalent Reflections 
 
1. Occasionally it is necessary to reindex a unit cell for consistency with earlier data sets or 
to take advantage of some particular property, as illustrated by the following examples: 
 
a. It is possible to index cells such as P3121 in two distinct ways, that differ by rotation of 
the a and b axes by 60˚ about the c axis. What are the transformations that relate coordinates and 
reflections in these two indexings? 
 
 A related example involves space groups such as P41 that can be indexed in two distinct 
ways  that differ by a 180˚ rotation about the diagonal axis between the a and b axes.  What are 
the transformations that relate coordinates and reflections in these two indexings? 
 
b. Native CPA crystals grow in space group P21 with a = 51.4 Å, b = 60.3 Å, c = 47.2 Å and 
b = 97.6˚, with one molecule in the asymmetric unit. Addition of ligands to these crystals 
occasionally results in packing changes that increase the asymmetric unit volume by factors of 2 
or 3.  The new unit cell dimensions in these cases are a = 74.4 Å, b = 60.4 Å, c = 65.6 Å, b = 
97.72˚ for the doubled cell and a = 100.7 Å, b = 60.4 Å, c = 74.4 Å, b = 104.6˚ for the tripled 
cell, respectively.  All space groups are P21.  What are the transformations that can be used to 
relate the native cell to these ligand-bound crystals, and what are the transformations that relate 
the native reflection indices to those measured from soaked crystals?  
 
c. MoFe-protein crystals (space group P21) can be indexed in two distinct fashions with cell 
dimensions  a = 108.4 Å, b = 130.5 Å, c = 81.5 Å, b =  110.8˚, and a = 110.1 Å, b = 130.5 Å, c = 

xe−αx
0

∞

∫ sin(βx)dx = 2αβ
α 2 + β 2( )2
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81.5 Å, b = 113.0˚, respectively.   What is the relationship between these two forms and what is 
the transformation that interconverts the reflection indices? 
 
d. A DNA crystal was collected in space group C2 with unit cell dimensions a = 66.6 Å, b = 
38.6 Å, c = 102.8 Å, b = 102.56˚.  Self rotation functions indicated that there were very strong 
two fold axes spaced every 60˚ in the ab plane, and a three fold axis perpendicular to this plane, 
suggesting that the crystals actually have higher symmetry.  What might be the space group and 
unit cell dimensions of this higher symmetry form? (Hint: think rhombohedral, and remember 
there are two types of settings: obverse (the standard setting with allowed reflection condition 

) and reverse (an alternative setting with )). 
 
2. What are the indices of equivalent reflections in space groups P31 and I422? 
 
3. What are the phase relationships between equivalent reflections in space groups P31 and 
I422? 
 
4. What classes of reflections are centric in space groups P21, P212121 and P3121?  
Calculate the two phase possibilities for centric reflections in these space groups. 
 
C.  Lattices and Miller Indices 
 
1. Assign Miller indices to the various rows in the following “crop lattice” along the I-5 in 
California’s Central Valley. 
 

 
 

D.  Crystal and Molecular Symmetry 
 
1. Unit cell and space group information are occasionally useful for deducing aspects of 
molecular symmetry.  An example of this type of reasoning is described in the following 
(slightly edited) excerpt from a paper. Does the stated conclusion necessarily follow? 
 
Unit cell dimensions are a=122.0 Å and c=142.1Å  (hexagonal indexing for space group P321). From the unit cell 
volume of 1.83x106Å3, the molecular weight of about 3.1x105, the assumed density of 1.2 gm cm-3, and assumed 
water content of about 40 per cent, we find that there are three molecules of the X complex in this unit cell.  
Accordingly, the space group requires that this molecular complex has at least one two fold axis. 
 

h − k − l = 3n h − k + l = 3n
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E.   Membrane and Solution Scattering 
1a. Interpretation of the diffraction pattern from a stack of membrane bilayers (a multilayer) 
of repeat distance d= 50 Å gives the following values for the amplitude and phases for Miller 
indices h = 0 to 4: 
 

F(0) = +954, F(1) = -156,  F(2) = 0, F(3) = 0, and F(4) = -43, in units of electrons. 
 
(Since the one dimensional electron density profile is centrosymmetric, the phases correspond to 
either "+" (0 degrees) or "-" (180 degrees). 
 
The center of the bilayer corresponds to z = 0, and so one full bilayer would extend from -25 < z 
< 25 Å.  Using an Excel spreadsheet, Mathematica, or other such program, calculate the electron 
density profile, r(z), in units of e/Å3 for 0 < z < 25 Å (in intervals no larger than1 Å) from the 
following equation: 

 

 
V is the volume of the two phospholipids spanning a bilayer = 3000 Å3 .  
(hint: it should look like the following graph) 
 

 
 
 
1b  The electron density of a bilayer should have the minimum value at the center of the bilayer 
(z = 0).  Show that if the sign of either F(1) or F(4) is changed from "-" to "+", the calculated 
electron density at z = 0 increases.  These types of considerations can be used to assign phases in 
the initial stage of a structural analysis of this type (or check that the experimental phases are 
consistent with expectations (assuming the expectations are correct)). 
 
 
 

ρ z( ) = 1V F 0( )+ 2 F h( )cos 2πhzd
⎛
⎝⎜

⎞
⎠⎟h=1

4

∑⎡

⎣
⎢

⎤

⎦
⎥

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-5 5 15 25

rh
o(

z)
 (e

/Å
^3

)

z (Å)



D.C. Rees          11/27/24 
 

7 

2 From a Guinier plot calculated from the following small angle x-ray scattering data, 
calculate the radius of gyration of the scattering object in Å.  The Guinier plot is discussed in the 
section on Small Angle Scattering in the Crystallographic Appendices. 
 
 

S (Å-1) I(S)/I(S=0) 
     0.186530000E-02     0.884620011 
     0.205149991E-02     0.869170010 
     0.223929994E-02     0.834320009 
     0.242549996E-02     0.791580021 
     0.261169998E-02     0.814920008 
     0.279790000E-02     0.782050014 
     0.298570003E-02     0.731760025 
     0.317199994E-02     0.723540008 
     0.335819996E-02     0.692969978 
     0.354439998E-02     0.664690018 
     0.373060000E-02     0.643660009 
     0.391840003E-02     0.615379989 
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Problem Set 1 Answers 
 
A.  Fourier Transforms 
1a  

 

1b 
 

 

This answer is equivalent to the transform calculated in part (a) translated by a/2, which 
introduces a phase shift of exp(2piS(a/2)) = exp(piSa). 
 
1c This integral can be calculated directly, or more easily evaluated by seeing that it will 
consist of the sum of two terms: the Fourier transform of the object in (1a) plus the same Fourier 
transform multiplied by the phase shift corresponding to a translation of “b” along x: 
 

 

 
  

F(S) = (1)e2π iSx
−a/2

a/2

∫ dx

= 1
2π iS

e2π iSx⎡⎣ ⎤⎦ −a/2

a/2
= 1
2π iS

eπ iSa − e−π iSa⎡⎣ ⎤⎦

= 2i
2π iS

sinπSa = sinπSa
πS

F(S) = (1)e2π iSx
0

a

∫ dx

= 1
2π iS

e2π iSx⎡⎣ ⎤⎦ 0
a
= 1
2π iS

e2π iSa −1⎡⎣ ⎤⎦

= eπ iSa sinπSa
πS

F(S) = sinπSa
πS

+ e2π iSb sinπSa
πS

= sinπSa
πS

eπ iSb 2cosπSb( ){ }
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2 

 

 
 

S (=1/d) 
(Å-1) 

=1/2d 
(Å-1) 

F(S) calc 
electrons 

F(S) Intl. Tables 
Vol C. table 6.1.1.1 
electrons 

0.0 0.0 1.000 1.000 
0.2 0.1 0.811 0.811 
0.4 0.2 0.481 0.481 
1.0 0.5 0.071 0.071 

 
 
This expression for r(r) is equivalent to the Hartree-Fock calculation for a 1 electron atom, and 
so the scattering factors agree exactly. 
 
3 In P2, with N atoms in unit cell, there are N/2 pairs of atoms related by crystallographic 
symmetry. 

 

 
P21: 

 

 

F(S) = 2
S

rρ r( )
0

∞

∫ sin2πSrdr

= 2
S
1

πa3
re−2r a

0

∞

∫ sin2πSrdr

= 2
πa3S

2 2 a( ) 2πS( )
2 a( )2 + 2πS( )2( )2

= 1

1+ πSa( )2( )2

sinϑ / λ

F hkl( ) = f j e
2π i hx j+kyj+lz j( ) + e2π i −hx j+kyj−lz j( )( )

j=1

N /2

∑

F hkl( ) = f j e
2π i −hx j+kyj−lz j( ) + e2π i hx j+kyj+lz j( )( )

j=1

N /2

∑
= F hkl( )

F hkl( ) = f j e2π i hx j+kyj+lz j( ) + e
2π i −hx j+kyj+

k
2
−lz j

⎛
⎝⎜

⎞
⎠⎟⎛

⎝⎜
⎞

⎠⎟j=1

N /2

∑

F hkl( ) = f j e2π i −hx j+kyj−lz j( ) + e
2π i hx j+kyj+

k
2
+lz j

⎛
⎝⎜

⎞
⎠⎟⎛

⎝⎜
⎞

⎠⎟j=1

N /2

∑
= eπ ikF hkl( )
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4 from problem 3,    

for the (0k0) reflection,  
for k = even, this expression is always true, since    
for k = odd, this expression is in general not true, since   
this expression can only be true if F(0k0)=0 when k is odd. 
 
5. Rotation matrices in space group P3: 
 

 

by the rules of matrix multiplication, the products of any two rotation matrices correspond to a 
rotation matrix in this group. 
 
R1*R1=R1 R2*R1=R2  R3*R1=R3 
R1*R2=R2 R2*R2=R3  R3*R2=R1 
R1*R3=R3 R2*R3=R1  R3*R3=R2 
 
B.  Reindexing and Equivalent Reflections 
1a for the P31 cell: 
 
 

   

  

F hkl( ) = eπ ikF hkl( )
F 0k0( ) = eπ ikF 0k0( )

eπ i(2n) = 1
eπ i(2n+1) = −1,  so F 0k0( ) = −F 0k0( )

R1 =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

   R2 =
0 −1 0
1 −1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  R3 =
−1 1 0
−1 0 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1a
b

a'

b

a

′a ′b ′c( ) = a b c( )
1 −1 0
1 0 0
0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

′h ′k ′l( ) = h k l( )
1 −1 0
1 0 0
0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= h + k h l( )
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1a, part 2 for the P41 cell 
 

 

 
 
 

 
 

 

 
This is a pseudo B-centered cell, since  

 

′a ′b ′c( ) = a b c( )
0 1 0
1 0 0
0 0 −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

′h ′k ′l( ) = h k l( )
0 1 0
1 0 0
0 0 −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= k h l( )

b.  double cell 0

74.2
47.2

65.1
c'

c

a'

a51.4

(a 'b 'c ') = (abc)
−1 0 1
0 −1 0
1 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(h 'k 'l ') = (l − h,−k,h + l)

h '+ l ' = 2l = even
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

'

= 1
2

−1 0 1
0 −1 0
1 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟



D.C. Rees          11/27/24 
 

12 

 

 
 

 

 

triple cell

0 a

a' 101.4Å

c'
74.2Å

c
(a 'b 'c ') = (abc)

1 0 1
0 −1 0
2 0 −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(h 'k 'l ') = (h + 2l,−k,h − l)
In this cell, h '− l ' ≈ 3l  for allowed reflections

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

'

= 1
3

1 0 1
0 −3 0
2 0 −1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a'

0

a

c,c'

1c

(a 'b 'c ') = (abc)
−1 0 0
0 −1 0
−1 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

(h 'k 'l ') = (−h − l,−k,l)
a ' = 110Å,  b ' = 130.5Å,  c ' = 81.5Å,  β = 113.0˚
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Transform to R32, with a ~38.6 Å, c ~ 305 Å 
   

  
 Å 

reindex    

     reverse 

reindex  

     obverse 

reindex  

     reverse 

66.6

38.6
38.6

a

-b1d
~60˚a

b  

12.6˚

66.6Å

a

c

66.6
sin12.6

≅ 305

(a 'b 'c ') = (abc)

1
2

0 1

−1
2
1 0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = h − k
2
,k,h + 3l h '− k '+ l ' = 3n

(a 'b 'c ') = (abc)

1
2

−1
2
1

1
2

1
2

0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = h + k
2
, −h + k
2

,h + 3l h '− k '− l ' = 3n

(a 'b 'c ') = (abc)

0 −1
2
1

1 −1
2
0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = k, −h − k
2

,h + 3l h '− k '+ l ' = 3n
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reindex  

    obverse 
 
 
Problem 2.   
Space group P31 
 

;  ;  

 

 
plus Friedel mates  
 
Space group I422 

 

 
plus Friedel mates  
 
Problem 3.  
Space group P31 

 

Space group I422 - all t's = (000) and a(hj) = a(h) 
 
 

(a 'b 'c ') = (abc)

−1
2

0 1
1
2

−1 0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = −h + k,−k,h + 3l −h '+ k '+ l ' = 3n

C1 =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

h k l( ) C2 =
0 −1 0
1 −1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

k, − h − k, l( )

C3 =
−1 1 0
−1 0 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−h − k, h, l( )

hkl( )

xyz xyz xyz xyz yxz yxz yxz yxz
hkl hkl hkl hkl khl khl khl khl

hkl( )

α hj( ) =α h( )− 2π hj • t j( )

t2 =
0
0
1
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α k, − h − k, l( ) =α h k l( )− 2π l
3

t3 =
0
0
2
3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

α −h − k, h, l( ) =α h k l( )+ 2π l
3
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Problem 4.  Indices of centric reflections satisfy the relationship:   

with phase choices given by  
 
space group centric reflection phase choice equiv. position 
P21 h0l 0 -x, 1/2+y, -z 
P212121 hk0 ph/2 1/2-x, -y, 1/2+z 
 h0l pl/2 -x, 1/2+y, 1/2-z 
 0kl pk/2 1/2+x, 1/2-y, -z 
P3121 h -h l 0 y, x, -z 
 h0l pl/3 -x, y-x, 1/3-z 
 0kl 2pl/3 x-y, -y, 2/3-z 

 
 

hTCj = −hT

α hj( ) = π hj • t j( )    modulo π( )
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C.  Lattices and Miller Indices 
 

 
from the perspective of August 2021, I’m not sure why I indexed the principal rows as (-1,0) and 
(0,1)…. 
 
D. Crystal and Molecular Symmetry 
 
This problem was based on an analysis of packing in ATCase crystals (Steitz, Wiley and 
Lipscomb, PNAS 58, 1859-61 (1967)). While it is not clear how the number of ATCase molecules 
in a P321 unit cell was originally calculated, it is clear that values for several critical parameters 
were not experimentally obtained. The original analysis may have developed as follows, defining 
the various variables as follow: 
 
Symbols: 
 n number of molecules in unit cell 
 NA Avogadro's number 
 M molecular weight of ATCase (=3.1x105) 
 VC unit cell volume (=1.83x10-18 cm3 for ATCase) 
 rc density of crystal (~1.15 gm/cm3) 
 rs density of water and crystallization buffer 
  partial specific volume of protein (0.737 cm3/gm) 

(-1,0) (-3,1) (-2,1) (-3,2) (-1,1) (-2,3) (-1,2) (-1,3) (-1,4) (0,1)

ν P
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 rp density of protein ( = 1/vp ) 
 Vp volume of unit cell occupied by protein 
 Vs volume of unit cell occupied by water 
 Xp volume fraction of unit cell occupied by protein ( = Vp/V) 
 Xs volume fraction of cell occupied by water ( = Vw/V) 
 
From the conservation of mass: 
             NArcVC  =     NArpVp       +     NArsVs 
       mass of crystal   = mass of protein + mass of water 
 
Now, 
              NArpVp   =     nM 
   =    NArcVc    -   NArsVs  
if the volume fraction of water in the cell is Xw, then: 
  n =  [NArcVc - NArsVcXs] / M 
for ATCase, if XS is taken to be 0.4 (assumed by Steitz, et al), then n is calculated as ~2.7 ~ 3, as 
originally reported.   
 
 
However, the crystal density and solvent content are not actually independent, and it can be shown 

that     Hence, if the rc = 1.15 and rP = 1.35 gm/cm3, then XS ~ 

0.57 and Xp ~0.43.  In terms of mass fractions, the crystal is almost exactly half protein and half 
solvent.  Confusion on this point may have resulted in the erroneous conclusion. 
 
In a subsequent paper (Wiley and Lipscomb, Nature 218, 1119-1121 (1968)), rc,  and rS were 
measured more accurately.  Since the crystallization buffer and water have similar densities: 
 

     

 
inserting the relevant values gives n = 2.02.  This  implies that ATCase has a 3 fold axis in order 
to crystallize in space group P321.  At the time, this result would have been striking, since ATCase 
was originally believed to have the composition (RC)4.  
 
  

XS =
ρP − ρc
ρP − ρS

 and XP =
ρc − ρS
ρP − ρS

ν P

n =
NAVC
M

ρC − ρS( )
1−ν PρS( )
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E.   Membrane and Solution Scattering 
1.   Electron density profile for the correct phases, and changing the signs of F(1) and F(4) 
 

 
 

Changing the sign of either F(1) or F(4) (or both, although I didn't calculate that) increases the 
calculated electron density at z  = 0.  
 
 
2.   Guiner plot  (this is for the nitrogenase ADP-AlF stabilized complex) 
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Problem Set 2.  Patterson Problems 
 
1. For the space groups P31 and P42, determine the (u,v,w) positions of self-vectors in the 
Patterson map in terms of the (x,y,z) coordinates for an atom in these space groups. What is (are) 
the Harker section(s) in these cases?  Notice that these self-vectors do not uniquely define an 
origin.  What are the (x,y,z) coordinates of the possible origins in these space groups?  
 
2. find single site solutions from the following Patterson sections (the horizontal and 
vertical axes in each extend from 0 to 1) 
a. P21; v=1/2 Harker section   b. P3121, w=1/3 Harker section 
(Georgiadis et al. Science 257, 1653 (1992))  plus w = 0 (non-Harker) to get z (hint) 
       (Peters et al. NSB 3, 991 (1996)) 
         

 
 
 
 
 
 
 
 
 
 
 
c. P65 (u,v) coordinates of Harker section peaks (neocarzinostatin, Pb1 derivative) 
 (Kim et al. Science 262, 1042 (1993)) 

   w=1/6   w=1/3   w=1/2 
0.04, 0.65 0.26, 0.56 0.09, 0.34 
0.35, 0.39 0.30, 0.74 0.25, 0.91 
0.39, 0.04 0.44, 0.70 0.34, 0.25 
0.61, 0.96 0.56, 0.30 0.66, 0.75 
0.65, 0.61 0.70, 0.26 0.75, 0.09 
0.96, 0.35 0.74, 0.44 0.91, 0.66 

 

w=1/3 

w=0 
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3.   The 3-dimensional peak listing and selected sections of a heavy atom difference Patterson 
map of the nitrogenase MoFe-protein  (Kim et al. Science 257, 1677 (1992)), are illustrated 
below in space group P21.  Interpret this Patterson map in terms of two major sites and two 
minor sites.  The two minor sites have the approximately the same y coordinates as the two 
major sites. 
 

peak  
height 

u v w 

 4038. 0.000 0.000  0.000 
   304. 0.068  0.000 0.000 
   202. 0.290 0.000 0.000 
   202. 0.709  0.000 0.000 
   325. 0.936 0.000 0.007 
   206. 0.704  0.000 0.096 
   206. 0.295  0.000 0.903 
   325. 0.063 0.000 0.992 
   255. 0.000 0.030 0.071 
   255. 0.000 0.030 0.928 
   435. 0.565  0.238 0.248 
   435.  0.434  0.238  0.751 
   200. 0.014 0.238 0.850 
   449.  0.280  0.262 0.000 
   449.  0.719  0.262  0.000 
200. 0.620 0.262 0.100 
200. 0.434 0.262 0.100 
   221.  0.139  0.500  0.147 
   324.  0.945  0.500  0.145 
   376.  0.288  0.500  0.249 
   450.  0.844  0.500  0.246 
   450.  0.155  0.500  0.753 
   376.  0.711 0.500  0.750 
   324.  0.054  0.500  0.854 
   221.  0.860  0.500  0.852 
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4. The w=0, w=1/2 and u=0 Harker sections for a heavy atom difference Patterson map 
calculated in space group P6322 are illustrated below (Joshua-Tor et al. Science 271, 1116 
(1996)).  Interpret these Harker sections in terms of one major site.  A second minor site with the 
same x coordinate is also present.  
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w=
0 

w=1/
2 

u=
0 
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Problem Set 2 Answers 
 
 
1. Space group  P31 (#144) 
 Harker peaks u,v,w =  -x-y, x-2y, 1/3; 2y-x, y-2x, 1/3; 2x-y, y+x, 1/3.  
 Equivalent solutions can be obtained by adding either (1/3, 2/3) or (2/3, 1/3) to (x, y) 
 The z coordinate for the first site is arbitrary. 
 
 Space group P42 (#77) 
 Harker peaks u,v,w = 2x, 2y,0; 2y, 2x,0; -y-x, x-y, 1/2; x-y, x+y, 1/2 
 Equivalent solutions can be obtained by adding 1/2 to both (x, y). 
 The z coordinate for the first site is arbitrary. 
 
 
2a. Harker peak in P21 (u, v, w) = (2x, 1/2, 2z) =  0.04, 1/2, 0.12, which yields (x,y,z) = 
(0.02, 0, 0.06).  The y coordinate is arbitrary; 1/2 can be added to either or both x and z; and the 
signs of both x and z can also be switched. 
 
2b. Space group P3121 (#152) Harker peaks: 
w = 1/3  u, v = -y-x,  x-2y; x-2y; 2y-x, -2x+y; 2x-y, x+y; -x-y, y-2x; 2x-y, x-2y; 2y-x, x+y 
w = 2z   u, v =  x-y,  y-x; x-y, 2x-2y; -2x+2y, -x+y; 
w = 1/3+2z  u, v = -2y, -y;  y, -y;  y, 2y;   (inverse positions for 2/3-2z) 
w = 1/3-2z u, v = -2x, -x; x, -x; x, 2x; (inverse positions for 2/3+2z) 
 
Let’s arbitrarily assign the peak at (0.42, 0.05, 1/3) to –y-x, x-2y.  
summing u and v = 0.42 + 0.05 = 0.47  
this also equals –y-x+x-2y = -3y or y = -0.16; together with –y-x = 0.42 gives x = +0.74  so the 
trial solution is (0.74, -0.16) = (0.74, 0.84). 
 
Now, there are three origins (+(0, 0), +(1/3, 2/3) or +(2/3, 1/3)) that are equivalent with the 31 
screw, but not all of these are compatible with the two-fold Harker sections at 2z, 1/3-2z, etc. 
Adding these origin shifts to (0.74, 0.84) gives the trial solutions of (0.74, 0.84); (0.07, 0.51); 
(0.41, 0.17). 
 
The two-fold Harker sections have peaks along the long diagonal such as (x-y, y-x, 2z);  
(x, -x, 1/3-2z); (y, -y, 1/3+2z); the corresponding peaks in the 2z section for the three trial 
solutions are: (x-y, y-x) = (0.90, 0.10), (0.56, 0.44),  or (0.24, 0.76) 
 
Of these, the solution with (0.56, 0.44) corresponds to peaks in the w=0 section, which gives 
z=0;  this is consistent with (y, -y, 1/3+2z) = (0.51, 0.49, 1/3). Hence, the solution is (0.07, 0.51, 
0). The five other sites related by crystallographic symmetry are (0.59, 0.56, 1/3); (0.44, 0.93, 
2/3); (0.51, 0.07, 0); (0.93, 0.44, 1/3); (0.56, 0.49, 2/3). 
 
In the original analysis, the coordinates used were (0.44, 0.93, 0.16), which is equivalent to 
(0.44, 0.93, 2/3) with an allowed z origin shift of 1/2.   
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2c. Space group P65 (#170) Harker peaks: 
 w = 1/6   u, v = -y, x-y and 5 other peaks 
 w = 1/3   u, v = -y-x,  x-2y and 5 other peaks (can add 1/3, 2/3   or 2/3, 1/3 to x, y) 
 w = 1/2   u, v = 2x, 2y and 5 others (can add 1/2 to either or both of x, y) 
 
 From the peaks u,v,w = (0.04, 0.65, 1/6) get x,y,z =   (0.61, 0.96, 0)  (z is arbitrary). 
 5 other equivalent solutions can be generated by applying a 6 fold rotation: 
 x,y = (0.61, 0.96);   (0.04, 0.65); (0.35, 0.39); (0.39, 0.04);  (0.96, 0.35); (0.65, 0.61) 
    
3a. Space group P21, equivalent positions x,y,z and -x,y+1/2,-z 
 
 Harker section vectors + (2x,1/2,2z) 
 
 peak heights in a Patterson are ~ fifj for the vector between atoms i and j.  So, the largest 
peaks will involve the two major sites, the next largest will be between the major and minor 
sites, and the weakest will involve only the minor sites. 
  
Structure solution strategy: Start with self vectors? This is the hard way to approach the problem 
(at least by hand), due to complications of hand and origin ambiguities. Instead, start with cross 
vectors, which we will call site 1 and site 2: 
 
site 1   1a:  x1, y1, z1  1b:   -x1, y1+1/2, -z1 
site 2  2a:  x2, y2, z2   2b: -x2, y2+1/2,- z2 
 
 crosspeaks:   2a-1a: x2-x1, y2-y1, z2-z1 
   1a-2b: x2+x1, 1/2-(y2-y1), z2+z1     
  Þ these peaks are located in v sections symmetric about v=1/4!! 
 
  so,  if 2a-1a is assigned to the peak 0.28, 0.26, 0.0 
  and if 1a-2b is assigned to the peak 0.57, 0.24, 0.25 
 
  these equations can be solved to give: 
   x2, y2, z2 0.43, 0.26, 0.12 
   x1, y1, z1 0.15, 0.0, 0.12 
 
checking the self peaks for these two sites shows that they are the two largest peaks on the 
Harker section. These sites also have the same z coordinate, which reflects the fact that the NCS 
twofold in this structure is perpendicular to the crystallographic a and b axes; ie, it is along c*. 
 
Finding the minor sites is harder - in a way, this is done by trial and error.   In this particular 
case, we’ll use the fact that pairs of sites have the same y coordinates (of course, one doesn’t 
know this when starting to search for heavy atoms!).  Hence, one minor site has y = 0 and the 
other has y = 0.26.  The crosspeak from the major site at 0.15, 0.0, 0.12 to the minor site with y = 
0.26 will be found in the v = 0.26 section of the Patterson map.  There are 4 possibilities for this 
crosspeak: 
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0.43, 0.26, 0.10;  .57, 0.26, 0.90; and 0.62, 0.26, 0.10; .38, 0.26, 0.10 
 
By adding the coordinates of this crosspeak to 0.15, 0.0, 0.12, the possibilities for the coordinates 
x3, y3, z3 of site 3 are: 
 
0.58, 0.26, 0.22;  0.72, 0.26, 0.02;  0.77, 0.26, 0.22;  0.53, 0.26, 0.22 
 
Now, these sites can be checked by looking for crosspeaks to the major site with 0.43, 0.26, 0.12: 
 
0.58, 0.26, 0.22 and symmetry equivalent 0.42, -0.24, 0.78  will have crosspeaks to 0.43, 0.26, 
0.12 of 0.15, 0.0, 0.10 and .01, 0.5, 0.34; these peaks are not present.  This rules out this choice 
for x3. 
 
0.72, 0.26, 0.02 and symmetry equivalent 0.28,-.24, 0.98 will have crosspeaks to 0.43, 0.26, 0.12 
of 0.29, 0.0, 0.90 and .15, 0.5, 0.14, which are present.  Thus, this site is probably x3, which is 
confirmed by testing out the other two possibilities. 
 
The coordinates for the 4th site can be found using the strongest unaccounted for peak on the 
Harker section (0.05, 1/2, 0.85 and 0.95, 1/2, 0.15).  This should then represent a crosspeak 
involving the minor site with y = 0, with the major site at 0.15, 0.0, 0.12 (because this pair will 
have a crosspeak at y = 1/2).  Hence the possibilities for x4 are: 
 
0.20, 0.5, 0.97 = 0.80, 0.0, 0.03 and 0.10, 0.5, 0.27 = 0.90, 0.0, 0.73. 
 
The first possibility would have crosspeaks to the site 0.43, 0.26, 0.12 of 0.63, 0.26, 0.09 
(observed), while the second would have crosspeaks at 0.53, 0.26, 0.39 (unobserved).  Hence the 
final solutions are 
 
major sites:  0.43, 0.26, 0.12 and 0.15, 0.0, 0.12 
minor sites  0.72, 0.26, 0.02 and 0.80, 0.0, 0.03 
 
4.    Space group P6322 (#182) Harker sections w = 0, 1/2 and u = 0 
 
w = 0   x+y, 2y-x; 2y-x, y-2x; y-2x, y-x; y+x, 2x-y; 2x-y, x-2y; 2y-x, y+x (+inverses) 
 
w = ½ 2x, 2y; x-y, x; y, y-x; -2y, 2x-2y; -x,-y; 2y-2x,-2x (+inverses) 
 
u = 0 0, x-2y, ½-2z; 0, y-2x, ½-2z; 0, y+x, ½-2z (+inverses) 
 
The simplest section to study is the u = 0.  It is expected that there should be lines of constant w, 
with 3 peaks.  Note that the only line of constant w that contains 3 (or more) peaks is w = ½, 
with 6 peaks at v = ±0.13, ±0.32, ±0.45.  This implies that z = 0, so that the peaks at w = ½ -2z 
and ½ + 2z merge. 
 
Since z = 0, the relative complexity of this Patterson reflects the coalescence of the w=0 and 
w=2z Harker sections. 
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Peaks can be assigned on the u = 0, w = 1/2 line by noting that the sum of the v coordinates for 
two peaks equal the negative v coordinate of the third peak.  For example, (y-2x) + (x-2y) add up 
to -(y+x).   Three peaks with u = 0, w = 1/2 that satisfy this are at v = 0.13, 0.32, -0.45.  With  
y-2x = 0.13 and x-2y = 0.32, these can be solved to give x, y, z = (0.14, 0.41, 0).  (NOTE: 
alternative solutions related by crystallographic and inversion symmetry are also possible). 
 
[The w = ½ section has some interesting properties, since it has peaks at x, y, ½ and 2x, 2y, ½.  
Peaks with this relationship are found at uvw = (0.14, 0.41, ½) and (0.28, 0.82 ½), for example; 
again giving (0.14, 0.41, 0) as the solution for xyz.] 
 
The minor site with the same x coordinate as the major site (x1, y1, z1) can be found from the 
positions of cross vectors in the u = 0 section, by noting that they occur at (0, v1, w1) = (0, y2-y1, 
z2-z1) and (0, v2, w2) = (0, x-y2-y1, ½-z2-z1) with x  º x1 = x2 and z1 = 0.    Hence there should be 
a pair of peaks with v1+v2 = x-2y2 =  +0.32 and at z2 and ½+z2. A pair of peaks satisfying these 
relationships are  (0, 0.07, 0.12) and (0, 0.26, 0.38) that may be solved for the coordinates of the 
minor site (x2, y2, z2) = (0.14, 0.48, 0.12).  
 
[The self vectors for the minor sites do not appear among the more significant peaks in the 
Harker sections, illustrating the general point that minor sites are often identified through their 
cross vectors with major sites] 
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Problem Set 3. Phasing: isomorphous replacement and anomalous scattering 
 
1a. Native and derivative data are measured from a centric structure. For a specific reflection 
|Fp| and |Fph| are measured to be 10 and 8 electrons, respectively. The heavy atom structure factor, 
fh, is calculated to be -2 electrons. What is the native phase? Assume perfect data and a perfect 
phasing model. 
 
1b. Native and derivative data are measured from a centric structure. For a specific reflection 
|Fp| and |Fph| are measured to be 10 and 8 electrons, respectively. The heavy atom structure factor, 
fh, is calculated to be -3 electrons. The average lack of closure <E> is calculated to be 2. What are 
the best native phase and figure of merit? What are the best native phase and figure of merit when 
<E>=6? 
 
2. Native and derivative data are measured from an acentric structure. For a specific 
reflection, the amplitudes from crystals of the native, derivative 1 and derivative 2 are measured 
to be 15 electrons, 14.4 electrons and 10 electrons, respectively.  The calculated heavy atom 
contribution to derivative 1 is 5 electrons, with a phase of 37˚, while for derivative 2 the 
corresponding quantities are 5 electrons and 323˚.  What is the native phase? Assume perfect data 
and model. 
 
3. For the hkl = 3 2 1 reflection of a structure in the centric space group , the following 
information is available for the native and two derivative data sets. Each derivative has one heavy 
atom site: 
 
 data set |F| heavy atom (xyz) lack of closure <E> 

 native  10  
 derivative 1 13 .2 .2 .0  1 
 derivative 2      8 .0 .0  0.16667 3 
 
Assume the heavy atom form factor is 1 electron (including the temperature factor, occupancy, 
etc.)   
 
a. Determine the most probable phase for the native structure, using each derivative data set 
individually. 
 
b. Determine the best phase and figure of merit using both derivatives. 
 
4. Show  for a centric structure with the inversion center at the origin, 
where A is the Hendrickson-Lattman coefficient. 
 
5. A certain heavy atom derivative has a value of k (the ratio of the real to imaginary scattering 
factors) of 10.  For the hkl = 5 10 2 reflection, Dano = -1.7 electron and Diso = 10 electrons.  The 
heavy atom phase for this reflection is 120˚.  Assuming the data is perfect, what is the phase (aph) 
of the heavy atom derivative? 
 

P1

mcosαbest = tanhA
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6. The real (A) and imaginary (B) components for the structure factors from a protein (Fp) 
and heavy atom (normal scattering fh and anomalous scattering dh) are listed below: 
 
   A  B 
 Fp 15.0 5.0 
 fh 1.0 3.0 
 dh -0.3 0.1  
 
a. Calculate the phases of (i) Fp and (ii) the vector sum of the normal scattering components 
Fp+fh. 
 
b. Dano is observed to have a positive value. By calculating the expected value of Dano from 
the information above, decide whether the hand (enantiomorph) of the structure has been correctly 
assigned. 
 
7  It is essential to the calculation of MAD phases that the correct hand of the heavy atom 
solution be established, as the incorrect hand will lead to garbage phases and electron density maps.  
In a space group such as P1, it is straightforward to change the hand; if one solution has coordinates 
(x y z), then the other hand has coordinates (-x –y –z).  For space groups that occur in 
enantiomorphic pairs, such as P41212 and P43212, things are somewhat more complicated, because 
changing the heavy atom hand also requires changing the space group. 
 
(a) suppose the heavy atom site (xyz) represents a solution to a Patterson map interpreted in 
space group P43212.  What are the coordinates/space group of the heavy atom solution 
corresponding to the opposite hand? 
 
(b)  suppose the heavy atom site (xyz) represents a solution to a Patterson map interpreted in 
space group I41.  What are the coordinates/space group of the heavy atom solution corresponding 
to the opposite hand? (Hint: there is no space group I43) 
 
8a. A crystal consisting entirely of one type of anomalous scattering atom crystallizes in an 
acentric space group. Is Friedel's law maintained? 
 
b. A crystal consisting entirely of one type of anomalous scattering atom crystallizes in a 
centric space group defined with the inversion center at the origin. Is Friedel's law maintained? If 
so, are the two phase possibilities 0˚ and 180˚? 
 
9. The heavy atoms in an isomorphous derivative of a protein are related by an inversion 
center at the origin.  [An example would be a single site heavy atom derivative in space group P21, 
located at x,+1/4,z and -x,-1/4,-z].  SIR phases for the protein are calculated using this derivative.  
What are the consequences of this situation for the native electron density map calculated with 
these SIR protein phases? 
 
10. The positions of a native anomalous scatterer in a protein are related by an inversion center 
at the origin.  [An example would be a single scatterer in space group P21, located at x,+1/4,z and  
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-x,-1/4,-z].  Phases for the protein are calculated using this anomalous scattering information.  
What are the consequences of this situation for the native electron density map calculated with 
these phases? 
 
 
Hints: 
 For isomorphous differences 

 

 For anomalous differences 

 

 
With one source of phase information, and two choices (in general) for the protein phase, it is 
necessary to use both in calculating the native electron density map: 
 

 
 
One of the phase choices will be correct, and will lead to the true electron density for the structure, 
while the other is incorrect, and will lead to the artefactual features that are addressed in the last 
two problems. 
  

Δ iso ≅ fh cos α p −α h( ) ≡ fh cos ϑ( )
Solutions:
α p1

−α h =ϑ   or  α p2
−α h = −ϑ

α p2
= 2α h −α p1

Δano ≅ 2δ h sin α ph −α h( ) ≡ 2δ h cos α ph −α h +
π
2

⎛
⎝⎜

⎞
⎠⎟

Solutions:

α ph1
−α h +

π
2
=ϑ   or  α ph2

−α h +
π
2
= −ϑ

α ph2
= 2α h +π −α ph1

Fpe
iα p = Fp eiα p1 + eiα p2⎡⎣ ⎤⎦
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Problem Set 3 Answers 
 
1a. Diso=|Fph|-|Fp| = -2 < 0 so that Fp has opposite sign from fh; fh=-2 electrons, so that Fp=+10 
 
1b. There are two phase choices for Fp: (+) and (-).  For E=2 
 
 P(+).   Fph,calc = Fp + fh = 10-3=7 
  e(+) = |Fph,obs|-|Fph,calc| = 8-7=1 
  P(+) = exp[-e2/2E2] = 0.88 
 P(-) Fph,calc = Fp + fh = -10-3 = -13 
  e(-) = |Fph,obs|-|Fph,calc| = 8-13 = -5 
  P(-) = exp[-e2/2E2] = 0.044 
 mcosa = [cos(0)P(+) + cos(180)P(-)]/[P(+)+P(-)] = 0.84/0.93 = 0.91 
 m = 0.91; a = 0 
 
 For E = 6; P(+) = 0.99, P(-) = 0.71;  m = 0.17, a = 0 
 
 
2. |Fp| = 15, |Fph1| = 14.4, |fh| = 5, ah1 = 37˚, |Fph2| = 10, |fh2| = 5, ah2 = 323˚ 

  

 derivative #1, q = 106.5˚;  ap = 143.5˚, -69.5˚ 
 derivative #2, q = 180˚;  ap = 143˚, 143˚   (note: heavy atom and protein Fs are collinear) 
 protein phase = 143˚ 
 
3. ;  derivative 1, fh = +2.0; derivative 2, fh = +1.0. 
  
  a=0 a =180 
Derivative |Fph,obs| |Fph,calc| |Fph,o| -|Fph,c| P(+) |Fph,calc| |Fph,o| -

|Fph,c| 
P(-) 

1 13 10+2=12 1 .607 |-10+2|=8 5 3.7x10-6 
2 8 11 -3 .607 9 -1 .946 

 
The most probable phases for derivative 1, 2 = 0, 180˚, respectively. 
Combined phase, P(0) = .607x.607=.368; P(180)=3.7x10-6x.946=3.5x10-6 
mcosa = [.368-3.5x10-6]/[.368+3.5x10-6]=1.0.   m=1.0; a=0  
 
4. P(a) ~ exp(Acosa)   
 mcosabest = [P(0)-P(180)]/[P(0)+P(180)] = 
  

  

α p =α h ±ϑ

ϑ = cos−1
Fph
2 − fh

2 − Fp
2

2 fhFp

fh = 2 ⋅1⋅cos2π 3x + 2y +1z( )

eA − e−A

eA + e−A
= tanhA



D.C. Rees          11/27/24 
 

32 

 

 
5. 

  

6a 

  

6b 

 

 
the wrong hand was assigned 

 
7 Changing the enantiomer involves inverting the crystal structure (-x, -y, -z) through the 
appropriate origin such that the symmetry operators (of opposite hand) remain in the same place 
with respect to the crystal axes.   
 
7a.  The 41 axes in P41212 are positioned at (½, 0, 0) and (0, ½, 0), the same as the 43 axes in 
P43212.  Hence changing the enantiomer from x, y, z in P43212 involves changing to –x, -y, -z in 
P43212. 
 
7b. The 41 and 43 axes in I41 are located at +(¼, -¼, 0) and + (¼, ¼, 0), respectively, which 
means that they are related by an inversion center at (½, ¼, 0) Hence, the x,y,z coordinates must 
also be inverted through this point, so that the enantiomeric structure has coordinates 

 
in space group I41. 
 
8a. Yes, Friedel’s law is maintained :  

Δano

Δiso

= −1.7
10

= 2 δ
f

⎡
⎣⎢

⎤
⎦⎥
sin α ph −α h( )
cos α ph −α h( )

tan α ph −α h( ) = 5 −1.7
10

⎡
⎣⎢

⎤
⎦⎥

α ph −α h( ) = −40o

α ph = 80
o

α p = tan
−1 B

A = tan−1 5
15 = 18.4

!

α ph = tan
−1 B

A = tan−1 5 + 3
15 +1= 26.6

!

F+ = 15 +1− .3( )2 + 5 + 3+ .1( )2 = 17.67

F− = 15 +1+ .3( )2 + 5 + 3− .1( )2 = 18.11
Δano = 17.67 −18.11= −0.44

≈ 2 δ h sin α ph −α h( ) = 2 .32( )sin 26.6 − 71.6( )
= −0.45

x, y, z( ) = (1 / 2,1 / 4,0)− (x −1/ 2, y −1/ 4, z) = (−x,1 / 2 − y,−z)

Fhkl = Fhkl
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8b. Friedel’s law is maintained, but the phases are no longer 0˚ or 180˚. 
 

 
 
 
9. Since ah=0˚,180˚ 

 

 
 The net result is the real structure is superimposed on the inverse structure. 
 
10. Since ah=0˚,180˚ 

 

 
 The net result is the real structure is superimposed on the negative of the inverse 
structure.  In space group P21, points with coordinates (x, 1/4,z) and (-x,-1/4,-z) are equivalent.  
Since they are also related by an inversion center, the only way all these conditions can be 
satisfied is if all the densities in the y=1/4 and -1/4 sections are zero; ie.  there is nothing in the y 
sections with the heavy atoms.  

Fhkl = Fhkl eiα p1 + eiα p2{ }
= Fhkl eiα p1 + ei 2αh−α p1( ){ }
= Fhkl eiα p1 + ei −α p1( ){ }

Fhkl = Fhkl eiα p1 + eiα p2{ }
= Fhkl eiα p1 + ei 2αh+π−α p1( ){ }
= Fhkl eiα p1 − ei −α p1( ){ }
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Problem Set 4. Molecular replacement 
 

1. Packing peaks:  Even fold non-crystallographic axes parallel to even-fold 
crystallographic axes give rise to large packing peaks in the native Patterson map, since the non-
crystallographic symmetry in these cases can also be described as a translation.  Assume a non-
crystallographic two fold axis is parallel to the b axis in space group P21, and is defined by x and 
z coordinates xo and zo.  What are the coordinates of the packing peak? 
 
2. Klug peaks:  One dimer per asymmetric unit crystallizes in space group P21, with cell 
angle b = 90.00˚.  The dimer twofold axis is parallel to the a axis, and is defined by y and z 
coordinates yo=0 and zo.    What does the two-fold rotation (k=180˚) section of the self rotation 
function look like for this crystal?  The two dimers are related by both the crystallographic 21 
screw operation, and a non-crystallographic symmetry operation.  What is the non-
crystallographic symmetry relationship between the two dimers?  Is the non-crystallographic 
symmetry reflected by the presence of any packing peaks in the native Patterson map for this 
crystal? 
 
3. Show that a translation of all atoms in a structure in real space corresponds to a phase 
shift of all reflections in reciprocal space.  The relationship  might be useful. 

 
4. A trimeric molecule crystallizes in space group P31, with one trimer per asymmetric unit. 
The trimer three fold axis is parallel to the unit cell c axis (the 31 screw axis direction).  It is 
noted that reflections with h and k indices both even obey the rhombohedral extinction rule h-k-
l=3n (ie, reflections with both h and k even and h-k-l ¹ 3n are systematically weak).  Based on 
this information, determine the locations of the trimer three-fold axes.  This problem is loosely 
based on crystals of the lambda repressor DNA binding domain.   
 
5. Real Space Translation Functions:  Assume you have: 
 An experimentally determined electron density map, calculated with complex structure 
factors Fo(h) = Ao(h) + iBo(h). 
 A properly oriented (but perhaps incorrectly positioned) model structure, which when 
placed in a P1 cell of the same dimensions as the unknown structure has the corresponding 
complex structure factors Fm(h)= Am(h) + iBm(h). 
 The appropriate translation, u, needed to properly position the model in the unknown map 
may be determined by finding the u that maximizes the function T(u), which is the integral over 
the entire cell of the product between ro and rm, the observed and model electron densities, 
respectively:     
 
Although T(u) could be evaluated by a brute force calculation (i.e. translate the model to u1, 
calculate T(u1); translate to u2, calculate T(u2); etc.) show that a more elegant and faster way to 
calculate T(u) for all u is with the following Fourier transform: 

F(h) = f j
atoms j
∑ e2π ihx j

T (u) = ρo∫ x( )ρm x + u( )dx
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It may be helpful to use the relationship:  

 
  

T u( ) = 1
V 2 Fo h( )Fm h( )⎡⎣ ⎤⎦

h
∑ e−2π ih⋅u

= 1
V 2 AoAm + BoBm( )+ i AoBm + BoAm( )⎡⎣ ⎤⎦

h
∑ e−2π ih⋅u

ρ x( ) = 1V F h( )
h
∑ e−2π ih⋅x
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Problem Set 4 Answers 
 
1. The ncs twofold along y that passes through (xo,zo) converts a point with (x,z) to -(x-
xo)+xo,-(z-zo)+zo. The packing peak has coordinates + (2xo,0.5,2zo), which is the same as the self 
vector coordinates in the Harker section of a point at xo,zo. 
 

 
 
2. The ncs two-fold parallel to a with y=0 and z=zo relates the point (x,y,z) to the one with 
(x,-y,2zo-z).   
 

 
Applying the crystallographic symmetry generates Dimer 2 from Dimer 1.   From the 
coordinates of the equivalent positions, the relationship between Dimer 1 and Dimer 2 
corresponds to a non-crystallographic 21 screw axis parallel to c with a translational component 
along z of -2zo, and that passes through the point (x,y) = (0,0.25):   
 

 

 

c

a

+ (2xo,0.5,2zo)(x-2xo,y+0.5,z-2zo)

(-x,y+0.5,-z)

(2xo-x, y, 2zo-z)

(x,y,z)

zo

xo

,,

,,

Dimer 2

Dimer 1

a

zo

(-x,y+0.5,-z)

(-x,-y+0.5,z-2zo)

(x,-y,2zo-z)
(x,y,z)

−x
0.5− y
z − 2z0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥Dimer 2

=
−1 0 0
0 −1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+

0
0.5
−2zo

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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In this case, a self rotation function will show three perpendicular two fold axes, even though the 
molecule does not have 222 point group symmetry. 
 
3. 

 

 
4. The key point of this problem is that if a trimer with a three-fold symmetry axis is rotated 
by + 120˚ about the three fold axis, it looks the same. Hence, the trimers that are related by the 
three-fold screw axis in space group P31 all have the same orientation. Consequently, the screw 
axis operations are equivalent to translational relationships between the trimers spaced by 1/3 
along z.  Let T(h) be the molecular transform of a trimer positioned with the three-fold axis along 
z at x,y = (0,0).  Then, the transform of a trimer with the three-fold axis at xo,yo is given by: 

 
And the transform of the P31 cell is given by: 

 
For an R3 cell, xo and yo must be such that the exponential terms equal 1 when h-k-l=3n. This 
will occur when: 

 

with h-k-l=3n, then k-h = 3n’-l and -2k-h = k-h - 3k = 3n”-l 
 

If xo and yo are multiples of 1/3, then the terms involving 3n’ and 3n” will automatically equal 
integers.  Hence, the equation to be solved is: 

 
which has solutions (xo,yo) = (1/3,0), (0,1/3), (2/3,2/3), etc. It should be checked that these 
solutions actually do satisfy the extinction rule that observed reflections occur only when h-k-
l=3n. Hence, to create an R3 cell by placing trimers with the three fold axis along c in a P31 cell, 
the three fold axes should be placed at any of these points.  The same conclusion can be 
determined by inspection from the positions of the various symmetry axes in P31 and R3: 

F h( ) = f j
atoms j
∑ e2π ihx j    replace  x j  by x j + Δx

F ' h( ) = f j
atoms j
∑ e

2π ih x j+Δx( )

= F h( )e2π ihΔx

= F h( )eiΔαh

T ' h( ) = T h( )e2π i hxo+kyo( )

F h( ) = T h( ) e2π i hxo+kyo( ) + e
2π i kxo+(−h−k ) yo+ l 3( ) + e2π i (−h−k )xo+hyo−

l
3( )⎡

⎣⎢
⎤
⎦⎥

= T h( )e2π i hxo+kyo( ) 1+ e
2π i (k−h)xo+(−2k−h) yo+ l 3( ) + e2π i (−2h−k )xo+(h−k ) yo−

l
3( )⎡

⎣⎢
⎤
⎦⎥

(k − h)xo + (−2k − h)yo + l / 3= integer, and
(−2h− k)xo + (h− k)yo − l / 3= integer

3n '− l( )xo + 3n"− l( ) yo + l / 3= integer, etc.

−xo − yo +1/ 3( ) = integer
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However, the actual problem is not to make an R3 cell from a P31 cell, but to see rhombohedral 
extinctions when h and k are both even.  The way to achieve this is to translate the trimers from 
the R3 position by 1/2 along either x and/or y.  Consequently, the three-fold axes in this case 
should be positioned at points such as (5/6,0), or (1/2,1/3), or (1/6,2/3), etc. 
 
5. This problem will be solved in one-dimension, although the extension to three-
dimensions is “straight-forward”. 
 

 

 
So, T(u) can be calculated by a P1 Fourier series using coefficients Ac and Bc. 
 
This problem can also be solved by the convolution theorem (the Fourier transform of the 
product of two functions is the convolution of the Fourier transforms of the two functions). 

T (u) = ρo
0

1

∫ x( )ρm x + u( )dx

with ρ x( ) = 1
V

F h( )
h
∑ e−2π ihx

T u( ) = 1
V

Fo k( )
k
∑ e−2π ikx⎡

⎣
⎢

⎤

⎦
⎥

0

1

∫
1
V

Fm h( )
h
∑ e−2π ih x+u( )⎡

⎣
⎢

⎤

⎦
⎥dx

= 1
V 2 Fo k( )

h
∑

k
∑ Fm h( )e−2π ihu e−2π i h+k( )x

0

1

∫ dx

the integral equals 0, unless h = −k, and then equals 1

∴T u( ) = 1
V 2 Fo h( )

h
∑ Fm h( )e−2π ihu

If Fo h( ) = Ao h( )+ iBo h( )  and  Fm h( ) = Am h( )+ iBm h( )
then Fo h( )Fm h( ) = Ac h( )+ iBc h( )
where Ac h( ) = Ao h( )Am h( )+ Bo h( )Bm h( )  
and Bc h( ) = Ao h( )Bm h( )− Bo h( )Am h( )



D.C. Rees          11/27/24 
 

39 

 
References to this so-called phased translation function can be found in: 
• G.A. Bentley and A. Houdusse, Acta cryst. A48, 312-322 (1992) 
• P.M. Colman, H. Fehlhammer and K. Bartels in Crystallographic Computing Techniques 

(F.R. Ahmed, K. Huml and B. Sedlacek, eds), pp. 248-258, Copenhagen:Munksgaard (1976) 
• X. Zhu, et al. Science 251, 90-93 (1991) 
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Problem set 5. Least squares  
 
1. N pairs of points (ui,vi), i = 1, N are measured. You expect a linear relationship of the 
form: vi  = m ui + b to be satisfied by these observations. Derive the least squares expressions for 
the slope m and intercept b.  
 
2. What is the least squares expression for the scale factor a that multiplies an intensity set 
Fh to minimize the deviation to a reference data set Gh? 
 
3. The y origin is arbitrary in space group P1 (along with the x and z origins). Suppose that 
you have two sets of structure factors, F1 and F2, that were calculated from coordinate sets that 
used different y origins. Recall that the amplitudes of these two F sets will be identical, but the 
phases will be different due to the relative translation of the two structures along y. You wish to 
determine the difference in y origins to minimize (a1-a2)2 by shifting one structure along y.  In 
terms of a Taylor series expansion, the shift in y may be obtained from the following equation: 
 

 

Solve for the y  shift, using a non-linear least squares method based on minimizing  (a1-a2)2. 
Hint: the following relationships may be helpful: 
 

 

4. In the centric space group P21/c 
 

 

 

Evaluate    for p = x, y, z and B. 

 
  

α1 =α 2 +
∂α 2

∂ y
Δy

or  Δα =α1 −α 2 =
∂α 2

∂ y
Δy

F = A+ iB

α = tan−1 B
A

∂α
∂ y

=
∂ tan−1 B

A
∂ y

= 1

1+ B
2

A2

∂ B
A

∂ y

Fc hkl( ) = A hkl( ) = 4 fi
i=1

N

∑ e−Bi
sin2ϑ
λ 2

cos2π hx + lz + k + l
4

⎛
⎝⎜

⎞
⎠⎟
cos2π ky − k + l

4
⎛
⎝⎜

⎞
⎠⎟

∂ Fc
∂ pj



D.C. Rees          11/27/24 
 

41 

Problem Set 5 Answers 
 
 
 The key to all these problems is to convert them to the form F=AX, where F is the vector 
of observables; A is a matrix of known coefficients; and X is a vector with the variables to be 
determined.  The least squares solution to this equation is given by 
 

X = (ATA)-1ATF 
 
ATA is also known as the normal matrix. 
 
1. The slope m and intercept b in the equation vi = mui + b can be determined from pairs of 
(ui,vi), i=1,N using the correspondence:  Fi ® vi;  Ai1 ®  ui; A2i  ®  1; X1 ® m and X2 ® b.  
With this, one can show: 

 

 
 
After suitable effort, the explicit solution can be obtained: 
 

 

 
 

2. One wants to minimize   with respect to a.  Following the derivation 

outlined in the problem set, one finds: 
 

 

 
3. In this problem, structure 1 (and hence a1) is kept fixed, while a2 is varied while moving 
structure 2 along the y axis by an amount d.  The correspondence to F=AX is given by: 
 
 

AT A =
ui

2∑ ui∑
ui∑ N

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  and    AT F =
uivi∑
vi∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

X1
X2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= m

b
⎡

⎣
⎢

⎤

⎦
⎥ =

1

N ui
2 − ui∑( )2∑

N uivi − ui vi∑∑∑
vi ui

2∑∑ − ui uivi∑∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Φ = Gh −αFh( )
h
∑ 2

α =
FhGh

h
∑

Gh
2

h
∑
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The key derivative is : 

 

 

 

4. For space group P21/c, , with cosa= + 1. 

 
The derivatives can be evaluated in straight-forward, if not tedious, fashion: 
 

 

Fi = Δα i = α1 −α 2 δ( )( )
Ai =

∂α 2,i

∂δ  so that   AT A =
∂α 2,i

∂δ
⎛
⎝⎜

⎞
⎠⎟i

∑
2

X = δ  =  shift in y origin for structure 2

∂α 2,i

∂δ

∂α
∂δ

= 1

1+ B
2

A2

∂ B / A
∂δ

= 1
A2 + B2 A

∂ B
∂δ

− B∂ A
∂δ

⎡

⎣
⎢

⎤

⎦
⎥

A = f j cos2π hx j + k y j +δ( )+ lz j( )
atoms j
∑

∂ A
∂δ

= −2π k f j sin2π hx j + k y j +δ( )+ lz j( )
atoms j
∑ = −2π kB

∂ B
∂δ

= 2π kB

∂α
∂δ

= 2π k

∴δ =

∂α i

∂δ
⎛
⎝⎜

⎞
⎠⎟
Δα i

i
∑

∂α i

∂δ
⎛
⎝⎜

⎞
⎠⎟

2

i
∑

=
kiΔα i

i
∑
2π ki

2∑

∂ Fc
∂ pj

= cosα
∂ Ac
∂ pj

∂ A
∂ x j

= −8πhf je
− Bj sin

2ϑ λ2( ) sin2π hx j + lz j +
k + l
4

⎛
⎝⎜

⎞
⎠⎟
cos2π ky j −

k + l
4

⎛
⎝⎜

⎞
⎠⎟

∂ A
∂ y j

= −8π kf je
− Bj sin

2ϑ λ2( ) cos2π hx j + lz j +
k + l
4

⎛
⎝⎜

⎞
⎠⎟
sin2π ky j −

k + l
4

⎛
⎝⎜

⎞
⎠⎟

∂ A
∂ z j

= −8π lf je
− Bj sin

2ϑ λ2( ) sin2π hx j + lz j +
k + l
4

⎛
⎝⎜

⎞
⎠⎟
cos2π ky j −

k + l
4

⎛
⎝⎜

⎞
⎠⎟

∂ A
∂ Bj

= − 4sin
2ϑ

λ 2
A


