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Introduction and Overview

These notes have been prepared (and revised, re-revised, etc.) over the past decades while
working through various types of electrostatic problems encountered during our research. This
interest in electrostatics grew out of three inter-related efforts:

1. My attempts to determine the “effective dielectric constant” of proteins from the shift in
reduction potential upon modification of the net charge of a redox protein (J. Mol. Biol.
141, 323 (1980)).

2. Todd Yeates’ numerical calculation of the electrostatic potential in the photosynthetic
reaction center to evaluate the electrostatic contribution to the charge transfer asymmetry
in this fascinating system (Yeates et al. PNAS 84, 6438 (1987)). This was at a time
before the widespread availability of Poisson-Boltzmann equation solvers for proteins,
which Todd skillfully developed for this purpose.

3. Barbara Hsu’s efforts to experimentally evaluate the electrostatic potential around a
protein by crystallographically determining the distribution of electron dense cations and
anions (cesium and iodide, for example) in the solvent and relating this to the potential.
This approach introduced me to the work of Bertaut and the value of the reciprocal space
approach to solving electrostatic problems. The experimental accuracy required to
reliably quantitate the electrostatic potential was not realistic at the time Barbara was
conducting these studies, and unfortunately the project never progressed past the initial
stages. With advances in x-ray diffraction data collection, and the possibility of using
electron microscopy to get information on the electrostatic potential, this topic is worth
re-visiting in my view.

As will become clear, these notes are not intended as a complete and systematic development of
electrostatics, but rather reflect topics or problems I found of interest. This effort is a
consequence of the “learn-by-doing” approach that I have found to be particularly useful when I
am trying to learn new material.

NOTE: Since my proofreading and error correction skills are “imperfect”, be aware that
mistakes remain. If a derivation or equation doesn’t make sense, don’t exclude the possibility
that it is because of errors in the text or equations.



Fundamental Relationships of Electrostatics

SI units
q=1.6022x 10" C

47,21 1126 x 1010 C V' !
£0=8.8542 x 10712 C VI
1J=1Vx1C

cgs units

e =4.803 x 10°!% esu (where esu® = erg cm)

1 statvolt = 108 ¢ Volts =299.792 Volts (c=2.99792 x 10'° cm sec™)
lerg=107]J

Na = 6.0221 x 10?* mol!
ks =R/ Na = 1.38066 x 10 J K'! = 1.38066 x 10716 erg K'!

electrostatic interaction energy and potential calculations are for unit (+1) charges separated by
10A=10"m=10"cm=1nming=1.

“chemical” units are in terms of valence charges (z=+1, -2, etc.) and distance r in A.

Debye-Huckel parameters are calculated for aqueous solutions (¢ = 78.5) at 298 K, with ionic
strength, /, in moles/liter.

the V2 operator for spherically symmetric systems is given by:
1 O 10°(rd
qu):_zirzg_:_ (rz )
rdr  dr r or
The Wikipedia section on cylindrical and spherical coordinates is very useful;
one neat relationship:




quantity SI units cgs units “chemical” units
Poisson’s ) B p(r) 5 47p(r)
equation Vid(r)=- . Vo(r)=- .
Coulomb q &>
enerey 4me er Er
(1602210 (4.8032x10"°)’ 1389 92 kJ/mole
numerical B (1 1126 % 10_]0)(10_9) - (10‘7) &r
=2307%x107"J =2307x107" erg
XN, =138.9 kJ mol” =2307%x107" J
electrostatic q e
potential 4re er er
-19 -10
_ 1.6022 %10 _ 4.8032>§10 14402 v
umerical (1.1126x107°)(10™) 10° er
— 1440 V =0.00480 statvolts
%x299.79=1.440 V
Linearized p(r) 47p(r)
PB equation VO(r)=k’®(r)=- e VO(r)=k’®(r)=— -
0
Zlq eKa e—K'l‘ Zl_e eKa e—Kr
o(r) dre,el+ka 1 € l+ka r
2000N g / 87N € /
2 —
K g€ k,T 1000k, T
gekT 1 1000&ekT 1
tx 2000N ,¢° N1 TN & VI
J(78-5)(8-85xl0‘2)(1-38“0”)(298) 1| [1000(78.5)(1.38 x107%)(298)
2 -19'\2 I
umerical 2(6.02x10%)(1000)(1.60x10™)" VT 87r(6.02><1023)(4.80><10“°)2 s041
-10 _
= —3'041\7_10 m _ 3.041x10°° JI
! R
B Zizqz B Zizez
Iny; 8me, ek, T 2ek,T
_|ZZ‘612—’( .z e’
Iny. " 8me ek, T T2k, T
logy., —O.Sl\zg_\x/?




Poisson’s Equation

The electrostatic potential P = energy required to bring a single (+) charge q from 7 = °°
(where ®=0) to a point of potential P:

1@ > d(r)

Notice that
dd q
dar 4re er’
2 d_d) __ q
dr dre e
d.do__dgldr
dr dr dre, €

For a time averaged, spherically symmetrical distribution of charge around a central ion in
solution, the infinitesimal amount of charge, dq, in a shell of thickness dr is

r+dr

with dq = p(r) x vol. of shell, where p (r) is the charge density

dg = p 471'r dr
dg R
—=4nr
dr p
. 2
since —7° ae _ dq/ dr __ Arcrp
dr dr 47[808 471'808
therefore 4 7’ d_cI) V2 = L p
drdr £,€
= Vo= . Poisson's equation
808

where the V? operator (del squared or Laplacian) for spherically symmetric systems and
cartesian coordinate systems may be written:

10 ,00(_19°(®)|_oo 2o o'e_ p(r)
2or or| r or’ ax*  dy* 97’ €€
Poisson’s equation relates charge density to the spatial variation of the potential gradient. This is

a fundamental equation in electrostatics that we use in the analyses of the Debye-Huckel or
Gouy-Chapman theories.

Vd=—

0



Electrostatics in Real and Reciprocal Space
May-June, 2008 (updated August 2008; October 2008; July 2010)
reformatted May 2021
more reformatting August 2021

reference: P. Coppens “X-ray Charge Densities and Chemical Bonding” Oxford University
Press and the International Union of Crystallography (1997), esp. Chap. 8
notation
CD(r) = real space potential = FT of l//(S )
v (S ) = reciprocal space potential=FT of qD(r)
O'(r) = spatial charge density
¢(S)= FTof o (r)
F(S)= FT of real space charge distribution

relationship between dD(r) and W(h)
Starting from Poisson’s equation and following Coppens (Chapter 8)

*®(r)=—4mp, ., (r) (8.11)
19,9 & & &

ith V' =— — ==+
e 2 or ar ox dy’ 9z°
P (7) .
VZCI) - _ total SI t
(r) ce (SI units)

0
where p,_ (r) is the electron density from both electrons and nuclei, so that

dr
- I
the Fourier transform of <I)(r), l//( ) (Coppens uses (b( )), may be derived
:jy/ (h)exp[-27ih-r Jdh  (8.12)
V'@(r)=-4n’ [ Ky exp[—th rlh=-4mp,,(r) (8.13)

total J. total exp [_277:1}1 r]dh
le( ) ZZ exp[+2mh r, elemn( ) (sign in exponential changed 8/24/08)

(8.3)

E (h
w(h) = L() (8.16) (h’ is actually the length® of this vector (Z(ha*)2 A?)
T

hZ

F (h
-k s
0

An excellent discussion of this topic is provided in the PhD thesis of Zhengwei Su, PhD thesis
State University of Buffalo (1983), including treatment of the origin term.



Useful Fourier transformations and integrals

Fourier transform

function
1 11
r s> 7wh’
1 1
nS® r
M 4n = l ! L k=2no
, K +4n’S* mh'+a’

F(S)= T% ( )sm[27rSr]dr
0
f(r)= TQF S)sin[ 2728y |ds
0 r
T ]‘isin[Zn'Sr]
2 4 s
Ax T sm[27rSr]
K ran'st 1 S

Following Appendix 1 of Bertaut, the Fourier transform of 1/r may be derived as follows:

I Jexp[zmﬁ . F]df

r

exp[thr cos 19]
J. r>sinddrdddg (taking h as the polar axis)
r
=27t [ exp| 2zihr cos ® Jrsin ¥dOdr
sm[Zﬂ:hr] ) sm[Zﬂ:hr] )
ﬂj 5 ————=dr (note - Bertaut has "r" in denom.) [= 47rj—dr (Mathematica)]
hr

_ﬁ

Bertaut gives the final result for this integral, but Mathematica states that the integral does not
converge. Coppens has derived this result from Poisson’s equation earlier in this section.




Also note that the Fourier transform of the screened Coulomb potential ( >

1 1 )
> | with
h+o
k =2ro =0 does give ey but I’m not sure this limit is valid (Rob says it is!). The inverse
/4

1 1
Fourier transform of — gives — as it should.
r

And, note that 1/h? represents the distance squared in reciprocal space (ie 1/S?)

Spherically averaged potential and Poisson’s equation
F (S ), v (S ) = Fourier transforms of radially symmetric charge distribution and potential

= I%(S)sin(%rSr)dS

(% F(i)sin(2ﬂSr)dS

r ns

[}

—J ( sin 271'Sr) s
0

when F is in electrons, S in A" and r in A, the overall units for the potential are e/A. Multiplying
this by 1369 gives the energy in kJ /mole, and dividing by 96.5 =14.4 gives the result in Volts.

Poisson’s equation (spherical coordinates)

1
—-Ve(r)=p(r)
ihyio L9 20
with V- = S
_ 1 _ LT ( s1n 27er)dS
47r dry 7S r
v s1n(27rSr) _ 47*S? sin(27rSr)
r r
_vaq)(r) = L 2F(S)(— AnS” sin(27tSr)]dS
4 4 nwS r

—J—F sin 27tSr)dS p( )



Poisson’s equation (Cartesian, orthogonal)
0’ 0’ d’
Vies——+—5+—
ox~ dy” oz

~Lva()= -3 lezz 1 < (hkl)cos( 27 (ha'x+ kb y +1c'z )

4 ﬂ((ha V() (1) )
:__4ﬁ2z((ha ) +Ekb) (i) )

AV i (( Vo (k) + (i) )

LF (hkl)cos( 2 (ha'x+ kb'y + Ic'z)

p=13% F(hkl)cos(27(ha'x + kb y +1c'z)
V hkl

the units of ® when Fisine, Visin A3 and S is in A"! is again e/A.

10



Real and Reciprocal Space Electrostatics — Test Calculations

Self-charging of spherical ions

“Classical analysis” (?) of incrementally building up an ion of overall radius R, uniform charge
density p and total charge Q

2
dq(r)z%er
_%q(r)dq(r) _ 0" %qdq _30°
WS_! r "R gq'“_sze
_Tq q J‘r -7 3Q2_}i’” dr = %

0
(in the Born self charging energy, the radius is ﬁxed at R, and charge dq is incrementally added
to the surface of the sphere from r = o)

Following Bertaut’s analysis (Eq. 33), WS’ = quz J:‘(p(h)rdh

For a uniform spherical charge of radius R, G(r) = r<R (Egs.36-37)

4R’
go(h) 2 rsm[2n’hr}dr
4R h
_ 3 S ZOCOSA = 2mhR (Eq. 40)
o

11



. 2
J_J(D | 2ﬂR J:[SIHO{—(X(ZCOS(Z] do

_3
5R

and W = —Zq

oo 2
(why isn’t I_ |(p(h)| dh with the volume integral 4th?’dh?? This must be related to eq 1.2 of

0l s,
G

Bertaut’s 1978 paper that writes the self energy as J
0

Potential of a spherical (Gaussian) charge at the origin

¥2 ¥2
O'(r) —| 4 exp[—arz] (corrected 8/19/08 from | < | )
T r

o(S)= eXp|:—7Z,'2S2/a] = exp[—sz} (corrected 8/19/08 from exp[—nzSz/az})

The Fourier transform of the potential is (see chargel.nb)

=28 ¢(5) 2 -exp|-bS” |
ofr)= sz ssin[ 27y Jds =~ | %sm[znsr]ds
2 r
5o %
From Abramowitz & Stegun (pg 298), the asymptotic form of Erf is
Etfe[ 2] = ——exp| —z* | = 1-Frf[ =]

o[-

Eﬁ[z]zl—%

Giving

12



(8/19/08: Wikipedia (http://en.wikipedia.org/wiki/Electrical_potential) gives the corresponding
result for the electrical potential of a “tridimensional spherically symmetric Gaussian charge
density” calculated using Poisson’s equation:

p(r):ﬁe"2/202;V2®:_47[p;q)(l”)ngrf[\/;?} )

Uniform spherical charge of radius R

sin[ 272SR |- 2SR cos| 27SR |

(s)=3
4 (27SR)’
o(r)- 671 sin[ZﬂSR]—ZﬂSR:os[ZﬂSR] sin[ 25K s
g S (ZTL'SR)
= | absr=R)'~(r+ R) +3R((r= R) sign(r= R)+ (r+ &)
1y
=l,r>R
r

1 r
:ﬁ 3-; , '<R

Dipole of point charges (£8) at z = +(p/2)

-0 +9
Q—|—Q z
-p/2 +p/2

The Fourier transform of this charge distribution is:

F@pgawmmwpﬂwmﬁwﬁﬁ

in cylindrical coordinates S* =#*+{*; Scos®#={; Ssind¥=t¢,so

F( ) (t C) 215(0(t éf) sm[ﬂpg]

A48

13



The significance of the imaginary value for F' (t,C ) will be discussed below.
For point charges where (p(§ )= 1, the Fourier-Bessel transform gives for the potential

®(R.Z)= | {J27rtFt§) (27:Rt)dt}exp[ ~2milZ |d¢

—oo

= 4z‘5j {Tﬁ% (ZERt)dt}sin[ﬂpC]exp[—Zﬂi{Z]dC

]3 sin[ﬂpé’z] sin2|:27rZ§] a’é’}dl
0 r+&

The integral in brackets may be evaluated from 3.742.1 (page 415) of Gradshteyn and Ryzhik:

= 85IL]0(27th){

ﬁ o dx = 4ﬁ(exp[ (a—b)ﬁ]—exp[—(a+b),3]) a>b>0,Ref>0

p, a=2nZ, x=(, PB=t
]’2 51n[7zp§]mn[27r2§]
0 £+

J- sin ax sin bx
b=

—(exp[—(ZﬁZ - ﬂp)t] - exp[—(ZﬁZ + ﬂp)t:l)

with the result

C[)(R,Z) = SSIL}O(M'R;){J Sm[ﬂpé']sm[ZJtZCJ }

0 £+

= ZnEI[JO (ZnRt)(exp[—(ZﬁZ— ﬂp)t:I— exp[—(27rZ+ ﬁp)t])}dt

using the integral (from Mathematica, also 6.621.1 (page 711 of G&R with F(0, ; ;) =1)

. 1 1
!exp[ ot} oo} Ja' +1? “\/1+M/z
a

this expression may be reduced to

1 1 1 1

LD s ((2nR) (252 7p) ) anZmp +(Cer) /eaz e mn))

210

with Z >> p, this expression may be expanded in powers of (p/2Z) (Mathematica
dipole calcs.nb)

14



_ ) S 2,02
o z\1+(R/2’) (Z 1+(R2/Zz))3 (zz) O[(zzn
T 1

\/1+(R2/Zz) B \/l+(sin2 9/ cos’ 19)

_ pdcostd  pdR’cos’ B
z’ z*

=cos?

with

this may be rearranged to give the distance dependence in terms of the distance r, where

r*=7*+R* and Z =rcos?d

2 2
_ pé;)sﬁ‘[l_R Czozs 19}: 1175;(2’519[1_tan219cos2 19}

pocost [1 _sin? ?ﬂ _ pScost [Cosz 1‘}}
7’ 1 72
_ pocost)

2
r

Which is the correct expression!!! The dipole moment U=po .

15



Dipole potential of Gaussian charges

®(R,Z)= T{jsz t.L)J, (27rtR)a’t}exp[—2mCZ]d§

—oo

Fli0)= i’(‘?"( ))sm[npg]

for a Gaussian, (p(t,{,’) = exp[—sz] = exp[—bt ]exp[—bgz]

®(0.2)=4i5 | {J%cﬁ}exp[—b@Jsin[ﬂpg]exp[—2ﬂi§Z]d§

“texp[ ]dt:leprz r(0,6,°
[ ol o)

®(0,2)= 21‘5]2 1(0.647)sin[ 7 p¢ Jexp[ -2mig Z |d¢

—oco

= 21‘571"(0,1){2 Jsin[ 7 p¢ |(exp[ 27l Z ] exp| 27i¢Z ) d§
= 45}1“(0,[){2)sin[ﬂpé’]sin[Zﬂ{Z]dC

I couldn’t derive an asymptotic expression for this, for large Z, or Z >> p, but when numerically
integrated with Mathematica in dipole3.nb, this gives correct values of <I)(0,Z ) =pd / Z? with
b=10, p=1, and Z varying between 5 to 50.

16



Significance of imaginary scattering factor for the dipole potential

When F(h) = ‘F(h)‘ exp[ii%}, ,0(7”) = —p(—l”) , which is the symmetry of the dipole potential.

Proof
p(r)=3 S| () (expliaJexp[ 2t +])
plr) = () (exp l_ exp[_zmh r]+exp[_,5}exp[zmh r]]
2 r(0){ cos 2t or -2 || - 25 (sl ]

h>0 h>0

S—

——Z‘F h)’(sm[th r])— (r)

I>0

17



Hydrogen atom electrostatics test calculations

p(r)= ﬁ‘fz"/"

(s
(1+(7rSa)2)

p(r) = T?F(S)sin(thr)dS

F(s)= j% p(r)sin(275)d

Fourier transforms of electrostatic potentials from proton and electron:

‘//+(S):m192
v (5)=— 1

7S’ (1+(7L'Sa)2)2
Vo (S)=w.(5)-v (5)
2+(7tSa)2

(1 + (ﬂSa)2 )2

electrostatic potential around a hydrogen atom (see Hatom_electrostatics.nb)

=Ta

@(r)= [ 2y (s)sin(225r) s

0

= ]2 25 2+ 72:Sa s1n(27rSr)dS
0

(1+(7rSa) )

— [l + 1]6—2;’/5:
r a

this equation satisfies Poisson’s equation (equal to —electron density of electron) (must also
contain a term d(0) for the proton, but this didn’t come out explicitly)

18



Direct calculation of the Coulomb’s law electrostatic potential for the hydrogen atom

Define the following coordinate system for hydrogen with the origin at the proton:

The electrostatic potential, V(r), at the point r may be expressed

_e[1 o)
V()= arte, | 7 J|;7—;7' i
e |1 7, ,%F. ¥ P(?’)
= —— |7 dr’|sinddd | do 1
ATE, | ¥ l '<’>. '! (rz +7r2 =21 cos 19)/2
Eq. 15 L
o) e
with Za , this expression may be integrated (I did this with Mathematica —

H atom_electron_scattering_factors_calculations Sept2021.nb) to give

gt (1)
Eq. 16 e |\ r a

Note that even though the hydrogen atom is electrically neutral, the potential V(r) is always
positive!

numerical values
with charges in units of proton charge and distances in A (a=0.529 A)

¢Q)=(1+1Jé”“

r o a

= 1389(l+l)e2’/" kJ/mole

r oa
:1389 l+l PRy
96.5\r a

19



fact = 1389/96.5
b=0.529
pottot[r_] :=fact+«((1/r)+ (1 /b)) «Exp[-21 /D]

Plot[{potplus[r]. potneg[r]. pottot[r]}. {r. 0.1, 20.}, PlotRange — {-. 026,

AxesOrigin -»> {0, 0}]

-0.01

=0.02

= Graphics =
(from Hatom_electrostatics.nb)

note: ®(r)~0.026/ forr~1.94 (kT ~0.026V at RT)

units

eo = 8.85419 x 1012 C%/(Nm)? (/) = 4.8032 x 10'* esu (cm*? gm” s°!)
q=1.60218 x 10" Coulomb (1 C =6.241 x 10'8 charges)

N =6.02221 x 10> mol’!

F =96.485 kI/V
2
2 (ch 1.6022x107"
¢’ (charge) _ ( ) X 6.0221x10%
r(A) 4m(g,=8.854x10"7)107"
=1389.4 kJ/mole
=14.40 V

20

.026},



1 . . .
Coppens eq (8.24) for (O) , with p (r) = —36_2’/ “ (8(0) for the proton omitted since r’=0 at
a

the origin).

8T T 4 .
=— rre ¥ gy
3a 0
n!

n+l

with Tx"e_“x dx = andn=4, x=2/a
0
w(0)=27d"

which is the value calculated directly from the expression:
2+ (ﬂSa)2

(1 + (ﬂ:Sa)2 )2

v, (S)=na’

21



Bertaut’s lattice sum evaluation of electrostatic energies

F. Bertaut, L'énergie électrostatique de réseaux ioniques. J. Phys. Radium 13, 499-505 (1952)
E F. Bertaut, Electrostatic potentials, fields and field gradients. J. Phys. Chem. Solids 39,97-102 (1978)

Bertaut writes the total electrostatic energy, Wr, as the sum of two terms: Wj, that gives the energy due
to interacting charges, and Ws, the self energy, which is infinite for point charges.

W.=W +W

W __quq 2261% o,

i#j r,/

1 |Fh|
_27:1/2,:‘ po D)

This relationship reflects that the Patterson function at a position r is the sum of the products of
the electron density separated by a distance r.

Bertaut realized that a finite value for Wt would be obtained if self energy was evaluated, not for
point charges, but for non-overlapping spatial charge densities, o (r)

1w\ lo(h
oo L sl

with (p _[0' exp[thr]dr = j 4rr?

. R
)Mdr =J 2r G(r)sinZnhr dr
0

2rwhr

where the latter relations are valid for a spherically symmetric object.

the self energy is given by

2 j ) (Eq. 28)

o |<P(h)\2dh (Eq. 33)

for a uniform sphere, G(r) = r<R (Egs.36-37)

R’
o(h)=33E0E8Y it ¢ = 27hR (Eq. 40)
a
WS SRZq (for a uniform sphere; Eq. 39)

22



The interaction energy between ionic residues in a lattice may be calculated from Eq. 41

w=w'-w,

187:R Z| ‘ sma :cosa) zq

with F(h) = zqk exp| 27ih-x, | (Eq. 6)and oc=27th

k

Following (loosely) Templeton (J. Chem. Phys. 23, 1629 (1955)), Wi may related to the
Madelung constant, A (or M in Bertaut) through the expression

WL

A=—
A

where W; is the interaction energy per unit cell; L is the distance between closest, oppositely
charged ions (defined in terms of the cell axis length) and Z is the number of molecules per unit
cell.

Following Bertaut, expressions for W; may be derived as follows:

fce structure (NaCl, a=5.63 A; KCI, a=6.29 A)

a . . . . . a
R= 1 (the minimum ion-ion distance = 5)

& gz 34 & gz
W= a{n > —4}—52[88]:;[72% S ——192}

e odd & el odd &
12 2, 12
azzﬁMﬁzz R+iki+ 2
a 4 2
(sina—(xcosa)
8= 2
o
w.L W. a
A=— 5 ——2—l~1 747558 (Kittel)
e’/ e
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bec structure (CsCl, a=4.11 A)

R T3a (the minimum ion-ion distance = 7341)

F(h

e[l—exp[n’i(h+ ko + z)ﬂ =2e (h+k+1 0dd), 0 (h+k+] even)

2 2 2 2
g 3 4 e g
W = 13.57 e _|—==—|2&° |=—|13.57 e
I a|: h+k+21’odda :| 5\/_ I: ] a|: h+l§odda 5\/_

Vh +k2+12\/—a \/_T[\/iz

)

2r
(smoc acosa)

A=—— :——i—I~l.762670 (Kittel)

A simple Fortran program (Bertaut.f) summing up to maximum indices of 50 gives values of the
Madelung constants of 1.747606 and 1.762705 (accurate to < 0.003%; after hmax = 5, the values
are accurate to < 0.1% and 0.02%, respectively.

Jones and Templeton (J. Chem. Phys. 25, 1062 (1956) have derived different expressions for the
shape function that give improved convergence.
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Electrostatic calculations in a planar and membrane systems

Electrostatic potential in a planar (slab) system (test calculations for membranes)

consider a system with two infinite and oppositely charged planes perpendicular to the z axis and
crossing at +p and —p. For now, consider that the charge is everywhere zero, except it equals +1
atz=+pand-1atz=-p.

F ( S) — ezmSp _ efMiSp
eZm’Sp _ 6727”5/’ 2lSln(2ﬂSp)

w(s)=—0F s
CD(Z) _ % = sin(?erp) o s
2 r: sin(27rSp)czos(27tSZ)dS+g T sin(2nSp)iin(2ﬂSZ)dS
T, S Vi S

20 7 sin(27rSp)cos(27rSZ) _
T _-[ S? -
2 7 sin(27wSp)sin(22SZ
;j ( 22 ( )dszzn(—|p—z\+|p+z\)

—oo

. ®(z)=2x(-|p-Z|+|p+2)

between the plates (-p <Z <p), <I>(Z ) =4nZ

(capacitor.nb)
Plot[-Abs[1 - z] + Abs[1 +z]. {z. -10. 10}]

21

-10 -5 b= 10

= Graphics =
the voltage drop is linear between the charged surfaces (constant electric field). Outside the

surfaces, the potential has values + 4mp, so the total voltage drop is equal to 8xp or 4nd, where d
= the separation distance.
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Same calculation as above, but using SI units (ie, divide through by 4mneo))

F( S) — ezmsp _ e—zmsp

~ Q2T _ g 2miSp 2 sin(27tSp)
y(S)=0 4n’e,S* ° 4r’e,S?

2 1 p i 27TS -2riSZ
o(2)=" | Sm(SZ P) o s
0 —
_ 2io T sin(27tSp)cos(27rSZ)dS+2_a ]‘1 sin(27zSp)sin(27rSZ)d

B 47[280 - S? T S?
2io T sin(27rSp)cos(27rSZ)dS 0o
4r’e, °. S? B
20 7sin(2zSp|sin|2xSZ 270
47;230[0 ( L)S'Z ( )dSz =, (—‘p—Z‘+|p+Z‘)
- 0(2) = (Ho-2+|p+2)
between the plates (-p <Z <p), q)(Z) = ZE—G and AD = d)(p)—cl)(—p) = 250- = ci_O‘
0

0 0

For SI calculation, @ is in volts, d in meters, and o in C/m?; when d and o are A and charges/A2,
respectively, the conversion becomes:

20=0(p)-(-p)= L7 =

€ €

d(XlO"O)xa(1.602x 107" % 1020)

AP= (8.854><10-”)

=180.954 do
, AD(V)
O'(Charges/A ) =0.005526 )

as before
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Capacitor summary (from Edmonds)

. . 0,4 _od 0, _ A& Co_ O _E
basic equations ACI):{{;—;‘:g—, lezﬁzf, C = 1;[ :E:j

0 0

these equations are in SI units. To find charge density (charges/A?) that corresponds to a voltage
AV across a gap d (A), the following conversion may be employed

o £,AD
d
~(1.602x10™° Clcharge) (8.8542x107%)Ad>
°" (10 m*A?)  4(10™ m/A)
Ad)(volts)

o (charge/A” )= 0.00553 £

(charge/A”) d(A) (¢)
s0, a voltage of 1 V across 10 A corresponds to a charge density of 5.53 x 10 charge/A2. If there
is a material of dielectric constant €, the charge density is multiplied by ¢ (I think!!).

membrane capacitance, filled with dielectric material with dielectric constant &

c_Cu_0_25
S 4 d d

for a membrane, Cs ~ 1 uF cm2 ~0.01 Fm?; 1 F=1C/1V

A d d

L_dC, _ (4x10” m)(1x10” m?)

- 12 a1 ~4.5
g, 8.85418782%x107°C V' m
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Coulomb’s law analysis of parallel plate capacitor

Y +0
R |
. R .
r 2'}2 r
Z e -
0 L 4
Z 2p

1 1
\/r2+(2p—Z)2 Vri+ 72

d(I)(Z) = % = 0'27rrdr[%— %) =o2xrrdr

K 1 1
D(Z)=2n0|rd -
(2)=2m !r ' \/r2+(2p—Z)2 V#4272

let u=r?; a:(2p—Z)2; b=2*

q):ﬂazdu(\/ul-l-a_\/ul+bj
with !du(\/uia—\/uib]:z(x/i—\/g)
(I)(Z)z27r0'(\/5—\/;)=27w(2—(2p—2))
=2m6(2Z-2p)
AP =®(Z=2p)-®(Z=0)=870p=4n0d

where d = full separation between plates.

when units of e and A are used, the right-hand side is (e/A) or energy; A® in volts is then

AP =4rnod = 47[@0'd
96.5

=180.50d
or
1 AD AD
o (charge/A’ | = ————=10.0055—
(charge/A’) 1805 d(A) d
as above.
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For a somewhat more complicated system, composed of pairs of planes with charge —c
positioned at * a, and with charge + o at +b (assume b>a), the potential for |z| > b may be found
to vanish following the previous derivation:

- G Ha Ha )

R’ =(z—b)2+r2
R =(z—a)2+r2
R} =(z+a)2+r2
R; =(z+b)2+r2

Evaluating the integral as above gives

CD(Z)z 2i80[|z+a|+|z—a|—‘z+b|—‘z+bl]
for |z| > b, ®(z)=0
for ol <a, @(z)="(a=b) (=180.9540(a~b))

0

fora<|z| <b, q)(z):gg(z—b)

0

in finite difference test.nb, with s =-0.000553, a=3 A and b = 5A, the potential for |z| < a is
calculated to be 0.2000V from the above formula, consistent with the calculation (setting ®=0
outside the outer plates).

29



Asymptotic value for potential at center of two oppositely oriented “dipole” planes

Given two infinite and identical charged planar surfaces of charge density o (approximated as a
Gaussian of width A, with the positive (say) planes at +/-a and the negative at +/- b ,where b-p =
x (small with respect to p).

The Fourier transform of the charge distribution is

20 cos(278a)e ™) ~ 20 cos(27$h)e

so the potential is given by

20 %(cos(27Sa)—cos(27Sb s s
TR
00

2

_» _d®
at z=0, ®(0)= 20| 2 wbErt 2 - 2 pErt L1 21 Ve oV
4r’e, A A

with b = p+x and small x, this may be expanded to give

2. 2
@(0)_ 20 HSE pe_Az-i-ZﬂzErfﬁJx}
A

B 47’e, A

and the limit becomes

as above
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reciprocal space solution to parallel plate capacitor
original December 2008?
parallel plate part by inverse FT updated 8/15/2012

+0 -0
| z
a2 0 +di2

for the continuum case, let h, k, 1 be the components of S along x, y, z.
F(nkt)= [[[ p(xyz)e?™" ) dxaydz

. J J‘ L dy[ezm{lg] 3 e“’{f]]

F(OOZ) _ O_|:e—m'ld _ em’ld:'
=-2i0c Sin(ﬂ'ld )
note: F(hkl)=0 for h#0 or k0 since [[¢"™"*dxdy = 5(h) (k)

(so h’+k*+I? = P for non-zero F(hkl)in inverse FT for @(z))

CD(z) = ]i %e-hﬂzdl =-2i0 ]i %eﬂmkcﬂ
_ _2l£ r Sll’l(;[ld) (e_zmlz _ ezmlz)dl _ _4_0'} Sln(ﬂ'ld);ln(27l'lz) i
T P
__dofom)r_
T 2

where the last amazing integral comes from Gradshteyn & Rhyzik 3.741.3

]‘isin(ax)jin(bx) dx = % [O <a< b];
) x

=2 [o<bsa]

so the potential decreases linearly with z and the total potential drop is 4ozd , as derived
previously.
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Electric field near a uniform sheet of charge (Feynman 11 4.18)
- note: this is a uniform sheet of charge, not a sheet of charge on a conductor II 5-4:5-8!!

(X4,¥1,24)
I
e
7
1 x, —x,)plx,,y,,z, |dx,dy,dz
Ex(xl’yl’zl):4ﬂg ,[ ( : 22) ( = 22) — jsmete
() ) #a )
for the electric field along the z axis:
R
—z
0
t z2nRodR t  2RdR
Ez=j ) 23/2_271- StE
o(R +z ) o(R +z )
letu=R?and a = z*:
t z2nRodR T 2RdR
E = =
o e siad Yo
—Zn'O'w du _Z7Z'O'(— 2 "”J—ZEO'[O+—]
o (ut+a)” Va+u'’ Ja
=2n0
=xo2m(x*+y* " dxd
and E =J. ( y) y=E =0
X 5 2 ) 3/2 y
0 (R +x"+y )

for a charged conductor, each of the two surfaces gives an electric field of 2nc = 4 no total
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E here = 2no + 2n0 = 4no

E=0 here

~.

field from each surface = 2rno
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Linearized Poisson-Boltzmann Equation for Planar Systems

Vo = —4rp _ 0 |2 872:62NA1
£ 1000ekT

ex’d
4

planar system (Gouy-Chapman)

the PB equation V’®=x’® has the solution ®= 4e™; to determine the value of A, the
electroneutrality condition can be applied:

- 2.
o= —b[p(z)dz = +’Z—;A!e_“dz = %A

4
om0
Ke

giving

dro _
(I)(z) = e
K€
in the vicinity of the surface, the potential varies with distance A as:

CD(A)—(I)(O) = tz_go-((l_m)_ 1) _ 47tgaA

for small distances, the surface of a large sphere should also look planar;

for the Debye Huckel system with the screened Coulomb potential (I)(r) = Z—e—(lj_ )e_
£ Ka) r
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Ka —Ka _—KA —Ka

o a)-0la)= s :(HZ)-Z

=§(1+—1’m)_(1—m)(1—%]—1}

B 2
ze 1 1—m—é+;<A——1}

:g(1+lca)_ a a
__z_A (.1
B 8a(1+Ka) a

ze A ze

_J(HM)(MH)__JA

_ 4moA ( L ze ]
=- with o= >

£ dra

and for the reference Coulombic system, for a sphere of radius a and total charge Q:

Ara’c
o(r)=L =219 (15,
er er
the variation in potential near the surface is:

? 1 1| 4znd’ A 470N
CI)(a+A)—<I>(a):47m 0{ L\ dmao), A |__3%C
£ a+A a ae a £
AD 4
in all these cases, the electric field is given by £ = _807_A = %o"
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Gouy Chapman theory (see Chapter 12 of D.T. Edmonds)

In a solution of dielectric constant & adjacent to a planar membrane, Poisson’s equation is

@o(z) _ p(2)

i e
dCD(Z)
dz

0

with the electric field E(z)=—

Using Boltzmann’s equation

e Zeme| -5 |
d®(z) _ _z%exp{—w}

dz* ~ €€ kT

0

This may be solved using the following derivative identity

%zilw(z)r

dz> 2d®| dz

and F(®)= | L[ F(0)]d i F(cp):[dﬂb(z)]z

id{dq)(Z)T dq;-{dq’(z)r —2f TOL) g dZ

dz dz*

s T

0 D=0

D=

j exp[—o@]dd) = —é(exp[—ad)] - 1)

w8 e E
E(0)=¥=“%

zq®(0
O'S2 = 2kT£e‘OZ‘ni[expl:—kT():|— 1]

36



For a symmetric electrolyte, expanding the exponential exp[x]=1+x + x’ / 2+... gives for a

[TEEIR

symmetric electrolyte (1:1, 2:2, etc). (with 2 different definitions of “z”: valence charge and
distance from interface.....)

E(z)=—d®(z)—( 2 ]chp(z)

dz ee kT
- di)lgz) = Q(for al:l electrolyte)
. 1 ’ 2nq2
with (E] - g€ kT

the solution to this differential equation has an exponential fall off with distance from the
interface:

CD(Z) = <I)(0)exp[—z/l]
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Finite Difference Solutions to the Poisson Equation
July 2010

Poisson’s equation for a heterogeneous dielectric material may be described:

p(r)
-Ve(r)-Volr)=——=

(r)volr) 2

with the following boundary conditions for a one-dimensional system (along z)

) (z) is continuous

o()2)

it may also be appropriate to set (z)(z) =0 at some point.

1s continuous across an interface

If the system is sampled on a grid with spacing h, the derivatives may be approximated:

£, .V¢+ - (gi+1 +gi)(¢i+l _¢1’)

2 h
E tTE —0.
£ V¢, - ( -1 l) ¢1 ¢1—1
2 h
eVe., eVe (eate)(d,-0) (e.+e)(9-0,
~(Ve Vg) ~- - ~— |- .
i h h 2 h 2 h
if the pi are known, the ¢; may be obtained as solutions to the matrix equation
1
Ap=—p
80
A is a banded diagonal matrix with elements
(£.+e) (& +2.) (&, +2..)
Aii == 2 TE, Ai,H = 2 > Ai,i+l == ) .

At the boundaries (the first and last grid points), if the dielectric constant in those regions is a
constant (as it should be), then

A =g +e, A,=—(¢+¢)

Ay =€y ey, 4,= _(8N—l +8N)

Matrix A has a determinant of 0, however and cannot be inverted, so a constraint needs to be
introduced — typically either that the sum of the (appropriately weighted) ¢i add to zero (ie —if a
point is on a mirror plane, its weight is 0.5, etc), or that the potential has a specified value at a
certain point (ie — ¢n= 0). The constraint coefficients can go on the last row of A, with the
corresponding value of the constraint equation placed in the last element of the p vector).
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The Membrane Dipole Potential — evaluation from x-ray and neutron diffraction data?

this section is a work in progress
M.C. Wiener and S.H. White Biophysical J. 61, 434-447 (1992)

The membrane dipole potential is thought to arise from the orientation of dipoles in the
sidechainand glycerol backbone of phospholipids, generating a potential of ~+100 to +1000 mV
in the interior of the membrane bilayer. More detailed discussions may be found in

R.J. Clarke, Adv. Coll. Interface Sci. 89, 263 (2001)

L. Wang, P.S. Bose and F.J. Sigworth, PNAS 103, 18528 (2006) (use of cryoEM)

The eventual goal of this section is to see whether electrostatic calculations based on
experimental measurements by Wiener and White of x-ray and neutron diffraction from the
liquid crystalline (Lo phase ) bilayer of DOPC, sensitive to the electron and nuclear
distributions, respectively, can be used to calculate the membrane dipole potential in this system.

DOPC = 1,2-dioleoly-sn-glycero-3-phosphocholine — composition C44Hg4sNOgP per phospholipid
= 434 protons/electrons

+5.36 waters (x 10 electrons/water) =53.6 to give 487.68 protons/electrons per PL x 2 =975.2
protons/electrons per bilayer

d spacing (normal to bilayer) = 49.1 A
area/PL = 59.3 A2 (WW); 72 A% (Nagle), 70 A% (Engelman)
(note: these values are somewhat different than used in original Mathematica spreadsheets)

group N (per PL) Z (A) A (A) 1/e total protons
(del numbering) halfwidth

CH; 2 0 2.95 18
iCH, (1) 2.74 2.97 2.74 21.92
mCH; (2) 8.51 5.60 4.21 68.08
oCH, (3) 16.75 12.85 5.14 134.0
C=C (8 2 7.88 4.29 28
COo, 4 2 15.97 2.73 44
glyc (5 1 18.67 2.37 23
POy (6) 1 20.19 3.08 47
CHOL (7) 1 21.89 3.48 50
water  (9) 5.36 22.51 4.63 42.88
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(normalization)

T e cos(278z)dz  (FT)

z/A

A cos 27rSz)dS (inverse FT)

when there are symmetric peaks at £Z, the FT = 2cos(27rSZ )e_(”SA)

and when there are N groups (protons, electrons) the overall scattering factor contribution are:

2N cos(2n’SZ ) ol

X-ray and neutron diffraction measurements from stacked bilayers (include the use of by, bn)

index Fobs (x-ray) Fcalc (x-ray) Fobs (neutron) Fcalc (neutron)
0 275.16 6.06
1 -43.95 -43.98 -8.00 -7.15
2 -0.52 -0.64 -4.51 -4.41
3 5.15 5.34 4.81 4.61
4 -11.97 -12.15 -5.18 -5.36
5 3.38 3.77 -0.59 -0.49
6 -2.47 -2.80 0.84 0.80
7 2.03 2.05 0.0 -00.5
8 -2.24 -1.94 -0,94 -0.91

Table 1 has X-ray scattering lengths in units of 10! cm and “are given by the electron number

multiplied by mc?/e?” It seems to me that these are divided by mc*/e

2 —for example, 275.16 *

3.55=976.82 ~ 975.2 expected number of electrons.

In cgs units m=9.11x102% gm, ¢=2.998x10'° cm/sec, e = 4.8x1071? esu, so that mc?/e? = 3.55 x
1012 (cm™).  With 9 electrons for CH3, dividing by 3.55 gives 2.5352, very close to the entry in
Table 1 (2.540). Looking at the agreement between Fobs and Fcalc from the above model, it
seems that the scale factor is very close to 3.55.

In Figure 2B, when the ordinate is divided by 16.73 ( = 59.3/3.55 — haven’t figured out the
exponents yet) to convert to ¢/A3, the minimum and maximum are ~ 0.21 and 0.47, with the

interbilayer trough = 0.38.
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