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I. Waves and Complex Variables 
 
The defining characteristics of a wave are the wavelength, amplitude and phase, as illustrated 
below 
 

 
For fixed time, this can be written in terms of a cosine function of position as: 

 

Or, for a fixed position, this can be written as a cosine function of time as: 
 

where w is the angular frequency and is related to l by the expression: 

 

The intensity of a plane wave (which is the average rate of energy flow in the wave) is related to 
the energy density of the radiation (which is energy/unit volume) which in turn depends on the 
amplitude squared of the wave (see Karplus and Porter, pg. 46, and Cantor and Schimmel, pg. 
359).  Therefore, I ~ A2. 
 
Now, imagine that there are two waves with the same amplitude and same wavelength, but 
different phases – how does the superposition of these look? 

ψ x( ) = Acos 2π xλ +φ
⎛
⎝⎜

⎞
⎠⎟

ψ t( ) = Acos ωt +φ( )

ω = 2πc
λ
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In this example, the phases of the two waves differ by 90˚.  The resultant wave has the same 
wavelength and a phase that is the average of the two input waves. This result can be shown 
mathematically through the use of trigonometric identities (Feynman I:29-5): 
 

 

 
The intensity of the superimposed waves is given by the amplitude squared, or 

 

 
Complex variables provide a convenient notation to simplify (believe it or not) calculations 
involving superposition of waves. First, some background.  We can define the complex plane as 
having a real axis (by convention, the x axis) and an imaginary axis (by convention, the y axis).  
Components along the real axis are real numbers, while components along the imaginary axis are... 

R = A cos ωt +φ1( )+ cos ωt +φ2( )⎡⎣ ⎤⎦
with the trigonometric identity

cosα + cosβ = 2cos
1
2
α + β( )cos

1
2
α − β( )

this becomes

R = 2Acos
1
2
φ1 −φ2( )cos ωt +

φ1 +φ2

2
⎛
⎝⎜

⎞
⎠⎟

so that the resultant amplitude is

= 2Acos
1
2
φ1 −φ2( )

and the resultant phase is the average of the two input phases

I = 4A2 cos2 ϕ1 −ϕ2

2
⎛
⎝⎜

⎞
⎠⎟

= 2A2 1+ cos ϕ1 −ϕ2( )( )
using the above identity with β  = 0 which becomes

cos2 α
2

⎛
⎝⎜

⎞
⎠⎟
= 1+ cosα

2
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imaginary numbers, as indicated by a real number times the quantity i, where i2 = -1.  Hence, a 
complex number is represented as x + iy = z. 
 

 
A complex number can also be represented as a vector  with components r cosf + i r sin f, where 
r2 = x2 + y2 and f = tan-1 (y/x).  Complex numbers are added in an analogous fashion to adding 
vectors by independently summing the real and imaginary parts of the individual numbers: 
 

 
 
 A complex number can also be conveniently represented using an exponential notation: 
 

 

[this relationship can be seen by expanding the exponential in terms of the appropriate power series 
expression for ex, and factoring this into the cosine and sine series (see Box 13-1, Cantor and 
Schimmel].  The cosf and sinf terms are known as the real and imaginary components of a 
complex number, respectively, which are also designated Re and Im, respectively. 
 

!r

!r = reiφ

where

eiφ = cosφ + isinφ
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The exponential representation of complex variables is particularly useful because of the handy 
properties of exponentials, which can be used to derive trigonometric identities, etc. etc. 
 

 

 
The conjugate of a complex number, z*, is obtained by changing the sign of the imaginary 
component, ie z* = x – iy.  This is important, because the product zz* is always real, and is equal 
to the length squared of a vector in the complex plane:  zz* = (x + iy)( x – iy)= x2 + y2. 
 
 Back to our wave example.  Let’s suppose that we have two waves that differ only in their 
phase term: 
 

 

 
Hence, the second wave is equal to the first wave times a factor that corrects for the phase 
difference between the two waves. 
 
Now, lets look at the superposition of these two waves: 

 

 
Which equals the result derived in our initial trigonometric analysis of this problem, with A = 1. 
 
Because of the convenience of working with the exponential/complex number representation of 
waves and phase shifts, this formalism is emphasized in crystallography, but it is certainly possible 
to work everything out explicitly and equivalently in terms of trigonometric functions. 
 

eiaeib = cosa + isina⎡⎣ ⎤⎦ cosb+ isinb⎡⎣ ⎤⎦
= cosacosb− sinasinb( )+ i cosasinb+ sinacosb( )
now, from the properties of exponentials

eiaeib = ei a+b( ) = cos a + b( )+ isin a + b( )
equating the real and imaginary parts of these expressions gives

cos a + b( ) = cosacosb− sinasinb

sin a + b( ) = cosasinb+ sinacosb

ψ 1 = cos ωt +ϕ1( ) = Re ei ωt+ϕ1( )⎡
⎣

⎤
⎦

ψ 2 = cos ωt +ϕ2( ) = Re ei ωt+ϕ2( )⎡
⎣

⎤
⎦ = Re ψ 1e

i ϕ2−ϕ1( )⎡
⎣

⎤
⎦

R =ψ 1 +ψ 2

The intensity (amplitude squared) may be calculated from the
product of the exponentials times their complex conjugate

R
2
= ei ωt+ϕ1( ) + ei ωt+ϕ2( )( ) e− i ωt+ϕ1( ) + e− i ωt+ϕ2( )( )
= 2+ ei ϕ1−ϕ2( ) + e− i ϕ1−ϕ2( )

= 2+ 2cos ϕ1 −ϕ2( )
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II. Useful Properties of Fourier Transforms  
 
The convolution and Parseval's theorem are described in most treatments of Fourier transforms, 
such as Titchmarsh, pp. 50-51.  
 
Convolution Theorem  
If the Fourier transforms of two functions g(x) and f(x) are given by G(h) and F(h), then: 

 

ie the Fourier transform of the product of two functions is the convolution of the Fourier transforms 
of the two functions, and vice-versa.    This result relates the Fourier transform of a crystal to the 
Fourier transforms of the molecule and the lattice, for example. 
 
Parseval's Theorem: 

 

This relationship is useful for calculating the mean square density over the entire unit cell from the 
structure factor amplitudes. 
   
Generalizations to multiple functions are also possible; an extension to  is given by: 
 

 

 To maximize this expression, the value of the second summation should be proportional to F(h): 
 

 

since then the overall integral is given approximately by: 
 

 

The relationship between Sayre's equation (Acta Crystallogr. 5, 60-65 (1952)) and the 
maximization of r3 has been noted by E. Stanley (Acta Crystallogr. A35, 966-970 (1979)).  
Another way in which maximization of r3 may be accomplished is if all the structure factors have 
a phase angle of 0˚; this corresponds to the Patterson solution (superatom at the origin) which does 
satisfy all these relationships, but which is (almost always, anyways) not the desired solution. 
 
 

g(x) f (x)e2π ihx∫ dx = G(k)F(h− k)
k
∑

f (x)
2

∫ dx = F(h)
h
∑ 2

ρ3(x)

ρ3(x)∫ dx = F(h)F( p)F(q)e−2π i(h+ p+q)x
q
∑

p
∑

h
∑∫ dx

= F(h)F( p)F(q)
hpq
∑ δ (h+ p + q)

= F(−h) F( p)F(h− p)
p
∑

h
∑

F(h) ≈ F( p)F(h− p)
p
∑

ρ3(x)∫ dx ≈ F(−h)F(h)
h
∑ = I(h)

h
∑



   

D.C. Rees 8 - 

Sampling Theory 
The molecular and crystal transforms of an object are given by: 

 

The crystal transform is given by the molecular transform sampled at reciprocal lattice points 
(convolution theorem). 
 
By the inverse Fourier transform: 
 

 

 
This sampling theorem permits reconstruction of the continuous molecular transform from the 
discrete, sampled crystal transform. 
 
Two and three-dimensional Fourier transforms (Intl. Tables II, 72-73; 322-323) 
cylindrical coordinates 

 

polar coordinates 

 

inverse transforms are given on pg. 322 of the Inter. Tables II; with unit scattering factor and an 
upper resolution s0, the first two zeroes for the radial electron density in 3 and 2 dimensions occur 
at s0r = 0.715, 1.230 and 0.610, 1.116, respectively (Table 6.3.2). 

F(S) = ρ(x)e2π iSx

−1/2

1/2

∫ dx

F(h) = ρ(x)e2π ihx

−1/2

1/2

∫ dx; h = integer

ρ(x) = F(h)e−2π ihx

h
∑   (neglecting the volume factor)

F(S) = F(h)e−2π ihx

h
∑

−1/2

1/2

∫ e2π iSxdx

= F(h)
h
∑ e2π i(S−h)

−1/2

1/2

∫ dx

= F(h)
h
∑ sinπ (S − h)

π (S − h)

f s,ϕ , z( ) = F(S ,Φ,Z )e−2π i sS cos Φ−ϕ( )+zZ⎡⎣ ⎤⎦

−∞

∞

∫
0

2π

∫
0

∞

∫ SdSdΦdZ

f s( ) = 2π F S( )
0

∞

∫ J0 2πS( )SdS         (radial symmetry)

f r,ϑ ,ϕ( ) = F(R,Θ,Φ)e−2π irR cosϑ cosΘ+sinϑ sinΘcos Φ−ϕ( )⎡⎣ ⎤⎦

0

2π

∫
0

π

∫
0

∞

∫ R2 sinΘdRdΘdΦ

f r( ) = 4π F R( )
0

∞

∫
sin2π rR

2π rR
R2dR       (radial symmetry)
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III.    Matrices in Crystallography 
 
 
The nxm matrix A may be represented by {Aij} where Aij is the element of the ith row (of n) and 
jth column (of m), or more explicitly: 
 

 

 
For coordinate transformations that we will be emphasizing in this discussion, n and m are typically 
both 3.  For a full matrix least squares refinement, they would be equal to the number of parameters 
that are being refined. 
 
Two matrices, A and B can be multiplied to give a new matrix C through the equation: 
 

 

 
So, the ijth element of C is given by the sum of the products between the elements of the ith row 
of A and the jth column of B.  It is important to remember that,  in general,  (ie, matrices 
do not generally commute). 
 
Column vectors, c, can be thought of as matrices consisting of just one column, while row vectors, 
r, can be thought of as matrices consisting of just one row.  Matrices and vectors can also be 
multiplied together: 
 

 

 
A row vector and a column vector can be multipled together to give a scalar (number), which is 
also called the dot product: 
 

 

where q is the angle between r and c.  The dot product has the extremely useful property of 
representing the component of c in the direction of r, and vice versa. 

A11 A12 ! A1m
A21
"
An1 An2 Anm

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Cij = AikBkj
k
∑

AB ≠ BA

y = Ac
yi = Aikck

k
∑   column vectors

u = rA
uj = rk Akj

k
∑   row vectors

r • c = rkck
k
∑ = r c cosϑ
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The identity matrix, I, has 1's for the diagonal elements and 0’s elsewhere: 
 

 

 
If the product of two matrices A and B equals I, then A = B-1 and B = A-1; ie, A and B are the 
inverse of each other. 
 
The transpose, AT, of a matrix A is formed by swapping the row and column elements: 

 
Row vectors can be considered to be the transpose of column vectors, and vice versa.  The 
transpose of the product of two matrices . 
 
A particularly useful class of matrices are orthogonal matrices, so named because if the rows (or 
columns) are considered to be vectors, then all the rows (or columns) are orthogonal to each other 
(ie, their dot product equals 0).  Rotation matrices that correspond to rigid body rotations of 
various objects are orthogonal, because they transform one cartesian coordinate system to another 
(ie - the objects are not distorted by the transformation).  For orthogonal matrices, the inverse is 
equal to the transpose: 
 

 

If A is a rotation matrix that rotates object 1 to object 2, then A-1 = AT is the rotation matrix that 
rotates object 2 to object 1 
 
For symmetric matrices, the transpose of a matrix equals the matrix, and if this is an orthogonal 
matrix, then the inverse matrix also equals the original matrix: 
 

 

When A corresponds to a two fold rotation, then A is both orthogonal and symmetric, since 
applying two successive 180˚ rotations gets back to the starting structure, and this is the same as 
applying one 180˚ rotation, and then applying a -180˚ rotation (reverse rotation). 
 
The determinant of a matrix can be calculated by various algorithms; for a 2x2 matrix: 
 

 

When the determinant is 0, then the rows (or columns) are not all linearly independent.  This means 
that one or more of the rows (or columns) can be written as combinations of the other ones.  This 

1 0 ! 0
0 1
" #
0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Aij
T = Aji

AB( )T = BT AT

Aij
−1 = Aij

T = Aji

Aij
T = Aij = Aij

−1  when A is also orthogonal{ }

a b
c d

= ad − bc
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cannot happen for an orthogonal (rotation) matrix, except by error.  If the determinant of a rotation 
matrix is negative, then it will convert a right handed coordinate system to a left handed coordinate 
system (this is generally bad). 
 
The eigenvalues, l, and eigenvectors, x, of a matrix A satisfy the equation: 
 

 
where l is a number (which can be complex).  For cases where l=1, then x defines a direction that 
is unaffected by application of the matrix A; for example if A is a rotation matrix, then the 
eigenvector x corresponding to l=1 will be the rotation axis.  Subroutines are generally available 
for these calculations, such as EIGEN or with Mathematica. 
 
Examples 
 
Relationships between Self-Rotation Function and Cross-Rotation Function Solutions: 
 
Suppose two molecules, y1 and y2, are related by a rotation matrix R, determined, say, from a self 
rotation function: 
 

 
 
For the purposes of this problem, the translational components of the transformation are ignored. 
 
Further suppose a known structure, x1, can be rotated to y1 and  y2 with the rotation matrices P 
and Q, perhaps determined from cross-rotation functions: 
 

 

R, P and Q may be interconverted through the relationships: 
 

 

 
The orthogonal nature of these matrices (ie the inverse equals the transpose) was utilized in these 
derivations. 
 
Analysis of non-crystallographic and crystallographic relationships in the MoFe-protein 
crystals. 
 
The MoFe-protein from A. vinelandii crystallizes in space group P21 (a=108.4Å, b=130.5Å, 
c=81.5Å, b=110.8˚), with one tetramer in the asymmetric unit.  The tetramer consists of two ab 

Ax = λx

y2 = Ry1

y1 = Px1
y2 = Qx1

y2 = Qx1 = Ry1 = RPx1
Q = RP

QPT = RPPT = R

RT = QPT( )T = PQT



   

D.C. Rees 12 - 

dimers that are related by a non-crystallographic twofold.   (NOTE: this is the old indexing and 
inconsistent with the crystallographic convention with a < c) 
 
 

 
The non-crystallographic rotation matrix and translation vector that relate dimers A and B are:  
 

(a)         

 
and the crystallographic operator that relates A, A’ and B, B’ is the 21 screw: 
 

(b)        

With these operators, the transformation between A, B’ (or A’, B) may be determined: 
 

(c)              

The consequence of having a noncrystallographic two-fold axis perpendicular to a crystallographic 
21 screw axis (which has a twofold rotational component) is to generate a third operator that has a 

❛❜ a

c   c*

A B

A'B'

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
B

=
−1 0 0
0 −1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
A

+
54.0
−34.3
−0.4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
A'  or A or B or B'

=
−1 0 0
0 1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
A or A' or B' or B

+
0.0

65.2
0.0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
B '

=
−1 0 0
0 1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
B

+
0.0
65.2
0.0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−1 0 0
0 1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1 0 0
0 −1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
A

+
54.0
−34.3
−0.4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
+

0.0
65.2
0.0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
1 0 0
0 −1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
A

+
−54.0
30.9
+0.4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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twofold rotational component perpendicular to the other two.  Hence, the rotation function gives 
three perpendicular two fold axes. Does this mean the structure has 222 symmetry? 
 
NO! while some of these operations are true twofolds (such as the NCS twofold), others are screw 
operations that have translational components along the rotation axis (such as the crystallographic 
21 screw).  How can screw operations be distinguished from true rotations? 
 
The key to this distinction is to determine whether the translational component of the 
transformation has any significant component in the direction of the rotation axis.  Recall that the 
direction of the rotation axis can be identified with the eigenvector of the rotation matrix that has 
the unit eigenvalue (ie - application of the rotational operation to the point on the axis doesn’t 
change that position).  From this property, the rotation axis, s, can be identified, and the component 
of the translation vector, d, in this direction is given by the dot product s*d. 
 

 

So, the only true twofold rotation axis is between the dimers in the tetramer (a), while the 
crystallographic operation (b), and the relationship between dimers in different tetramers (c) are 
screw operations.  The translation in (b) necessarily equals b/2, while the translation in (c) nearly 
equals a/2.   
 
Unit Cell Transformations 
 
On occasion, it may be necessary to transform coordinates and reflection lists between different 
choices of unit cell.  This could arise if the unit cell chosen by auto-indexing during data collection 
is not the cell that you would like, or if there is some relationship between different crystal forms 
that one wishes to emphasize.  Here are some real-life examples 
 
Example 1. It is possible to index cells such as P3121 in two distinct, but correct, ways, that 
differ by rotation of the a and b axes by 60˚ about the c axis. What are the transformations that 
relate coordinates and reflections in these two indexings? 
 

OP       rot. axis     translation      
                 s              d(A)            s• d(A)

(a)          
0
0
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

         
54.0
−34.3
−0.4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

           − 0.4

(b)          
0
1
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

         
0.0
65.2
0.0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

              65.2

(c)          
1
0
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

         
−54.0
30.9
0.4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

         −54.0
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Example 2. Native CPA crystals grow in space group P21 with a=51.4Å, b=60.3Å, c=47.2Å 
and b=97.6˚, with one molecule in the asymmetric unit. Addition of ligands to these crystals 
occasionally results in packing changes that increase the asymmetric unit volume by factors of 2 
or 3.  The new unit cell dimensions in these cases are a=74.4Å, b=60.4Å, c=65.6Å, b=97.72˚ for 
the doubled cell and a=100.7Å, b=60.4Å, c=74.4Å, b=104.6˚ for the tripled cell, respectively.  All 
space groups are P21.  What are the transformations that can be used to relate the native cell to 
these ligand-bound crystals, and what are the transformations that relate the native reflection 
indices to those measured from soaked crystals?  
 
Example 3. MoFe-protein crystals (space group P21) can be indexed in two distinct fashions with 
cell dimensions  a=108.4Å, b=130.5Å, c=81.5Å, b= 110.8˚, and a=110.1Å, b=130.5Å, c=81.5Å, 
b=113.0˚, respectively.   What is the relationship between these two forms and what is the 
transformation that interconverts the reflection indices? 
 
Unit cell and coordinate transformations can be easy to implement, with details on pages 70-72 of 
Volume A of the International Tables.  Let P be the matrix that transforms the unit cell axes (a1) 
of crystal form 1 into the unit cell axes of crystal form 2 (a2): 
 

a2T =  a1T  P 
where  a1T is the row vector (a b c), etc.  The determinant of P gives the unit cell volume of crystal 
2 relative to crystal 1 (and will be positive if right-handed coordinate systems are used). 
 
P also transforms the reflection indices from crystal 1 (h1) to the indices of crystal 2 (h2): 
 

h2T =   h1T P 
where h1T is the row vector (h k l).  The inverse transform from crystal 2 to crystal 1 is given by 
the matrix Q = P-1 (and usually, P-1 is not the same as PT).  Q transforms the basis vectors: 
 

a2* = Q  a1* 
 

x2 = Q x1 
where a1* is the column vector of the reciprocal space vectors, x1 is the column vector of the 
coordinates of a point in real space, etc. The eigenvectors of Q with unit eigenvalues correspond 
to directions (x vectors) that are unchanged by this transformation. 
 
If the real space lattice is translated by a vector p, then the inverse shift is given by q = - Q p . 
 
The real space metric tensor, Gij = ai.aj, transforms as 
 

G2 = PTG1P 
and the reciprocal space metric tensor transforms as 
 

G2* = Q G1* QT 
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Solutions to the introductory examples can be determined using these relationships 
 
Example 1 

 

 

 

 
 

 

 
 
 
 
 
 
 

 
Example 2:  Doubled Cell: 
 
 
 
 
 

 
 

 

 

 
 
 
(h’ k’ l’) = (l-h, -k, h+l);  This is a pseudo B-
centered cell, since  
 

 

a

a'

b

b' (a 'b 'c ') = (abc)
1 −1 0
1 0 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

h ',k ',l '( ) = h+ k,−h,l( )

x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 1 0
−1 1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

• a

c

c'=
65.1

51.4

47.2a'=
74.2

(a 'b 'c ') = (abc)
−1 0 1
0 −1 0
1 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

h '+ l ' = 2l = even

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

'

= 1
2

−1 0 1
0 −2 0
1 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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Tripled Cell: 
 

 

 
 
 

 

 
;  In this case, 

 for allowed reflections 
 
 

 

 
 
 
Example 3 
 

 

 

 

 
 

 
 
 

 
(calculated either trigonometrically, or by 
transforming the metric tensor) 
 
 

There many interesting applications of unit cell transformations involving rhombohedral cells: 
 
Example 4:  Transformation from primitive rhombohedral cell to triply primitive hexagonal cell 
 
The standard obverse setting is used for the hexagonal cell, with origins at (0,0,0), (2/3,1/3,1/3), 
(1/3,2/3,2/3), and the reflection condition -h+k+l = 3n  (see Table 5.1 and figure 5.7 of Vol A of 
the International Tables).  For this transformation (see Table 5.1): 

a

c

O

a'=
101.4

c'=74.2
(a 'b 'c ') = (abc)

1 0 1
0 −1 0
2 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(h 'k 'l ') = (h+ 2l,−k,h− l)
h '− l ' ≈ 3l

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

'

= 1
3

1 0 1
0 −3 0
2 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

O
c,c'

a

a' (a 'b 'c ') = (abc)
−1 0 0
0 −1 0
−1 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(h 'k 'l ') = (−h− l,−k,l)

a ' = 110Å,b ' = 130.5Å,c ' = 81.5Å,β = 113.0˚
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where gH=120˚.  Equating the relevant matrix elements in the relationship GH = PT GR P gives: 
 

 

 

 

 
Example 5: A DNA crystal was collected in space group C2 with unit cell dimensions a=66.6Å, 
b=38.6Å, c=102.8Å, b=102.56˚.  Self rotation functions indicated that there were very strong two 
fold axes spaced every 60˚ in the ab plane, and a three fold axis perpendicular to this plane, 
suggesting that the crystals actually have higher symmetry.  What might be the space group and 
unit cell dimensions of this higher symmetry form? 
 

 
 

 

P =
1 0 1
1 1 1
0 1 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

         Q = P−1 =
2 / 3 −1/ 3 −1/ 3
1/ 3 1/ 3 −2 / 3
1/ 3 1/ 3 1/ 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

GR = aR
2

1 cosα R cosα R

cosα R 1 cosα R

cosα R cosα R 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

GH =

aH
2 aH

2 cosγ H 0

aH
2 cosγ H aH

2 0

0 0 cH
2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

aH = aR 2(1− cosα R )

cH = aR 3(1+ 2cosα R )

cosα R =
2− 3(aH / cH )

2

6(aH / cH )
2 + 2

aR
2 =
cH
2 (6(aH / cH )

2 + 2)
18

12.6˚

66.6Å

a

c

66.6
sin12.6

≅ 305
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Transform to R32: 
 

reindex  

     reverse 

reindex  

    obverse 

reindex  

     reverse 

reindex  

    obverse 
 
 
Example 6 

•
•

•

•
•

•

•
•

-b

b

a 66.6

38.638.6
~60˚

(a 'b 'c ') = (abc)

1
2
0 1

−1
2
1 0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = h− k
2
,k,h+ 3l h '− k '+ l ' = 3n

(a 'b 'c ') = (abc)

1
2

−1
2
1

1
2

1
2
0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = h+ k
2
,−h+ k
2

,h+ 3l h '− k '− l ' = 3n

(a 'b 'c ') = (abc)

0 −1
2
1

1 −1
2
0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = k,−h− k
2

,h+ 3l h '− k '+ l ' = 3n

(a 'b 'c ')− (abc)

−1
2
0 1

1
2

−1 0

0 0 3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

(h 'k 'l ') = −h+ k,−k,h+ 3l −h '+ k '+ l ' = 3n
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A crystal in space group R3 (a=148.0 Å, c=34.2 Å, hexagonal;  a=85.2 Å, a=118.3˚, rhombohedral) 
was originally indexed in space group C2 (a=87 Å, b=146 Å, c=33 Å, b=104.9˚). 
 
(a) Find the P matrix that converts the R3 cell to the C2 cell. 
(b) From the hexagonal cell constants, calculate the monoclinic and primitive rhombohedral 
cell constants by transforming the metric tensor G. 
(c) From the determinant of G, calculate the volume of the C2 cell relative to the R3 cell. 
(d) Show that if the R3 cell indices obey -h+k+l=3n, then the C2 cell indices obey h+k=2n 
 
 
 

    
 
 
 
         projection in ab plane        projection in a*c plane 
 
 

 

 

 

 

(0,0,0) b, b' (0,1,0)

a
▲+2/3

▲+1/3

▲+1/3▲+1/3
▲+2/3

▲+2/3

▲+1/3

(2,1,0)
   a*

(1,0,0)

a'

c,c'
(0,0,1)

(2,1,0)
  a*

(0,0,0)
+2/3

+2/3

+1/3

+1/3

a ' b ' c '( )
monoclinic

= a b c( )
hexagonal

P

P =
2 3 0 0
1 3 1 0
−2 3 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Gmonoclinic = P
TGhexagonalP

=
2 3 1 3 −2 3
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

21904. −10950. 0.
−10950. 21904. 0.
0. 0. 1170.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 3 0 0
1 3 1 0
−2 3 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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From the definition of the metric tensor, the cell constants can be extracted from the square roots 
of the diagonal elements, and the cell angles from the off-diagonal terms, to give for the C2 cell: 
a=88.4Å, b=148.0Å, c=34.2Å, b=104.9˚ 
The C2 cell volume is 2/3 that of the R3 cell, which equals the determinant of the P matrix. 
 
The unit cell constants of the primitive rhombohedral cell can be calculated by similar methods, 
following the procedure of Example 4. 
 
The C2 indices may be calculated from the R3 indices using the P matrix, to give: 
 

 

so that the C centering extinctions are obeyed. 
 
In the R3 cell, one of the rhombohedral origins contained within the C2 unit cell has coordinates 
(1/3, 2/3, -1/3).  The corresponding coordinate in the C2 cell may be calculated using the Q matrix: 

 

 
This represents the C centering operation in the monoclinic cell. 

Gmonoclinic =
7821. 0 −780.
0 21904. 0

−780 0 1170.

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

h k l( )
C2

= 2h+ k − 2l
3

k l
⎛

⎝
⎜

⎞

⎠
⎟
R3

h+ k( )C2 =
2h+ k − 2l

3
+ k

⎛
⎝⎜

⎞
⎠⎟ R3

= 2h+ k − 2l + (3k)
3

⎛
⎝⎜

⎞
⎠⎟ R3

= 2 h+ 2k − l
3

⎛
⎝⎜

⎞
⎠⎟
= 2 h− k − l + 3k

3
⎛
⎝⎜

⎞
⎠⎟
= 2 3n+ 3k

3
⎛
⎝⎜

⎞
⎠⎟
= 2n '

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
C2

= Q
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
R3

=
3/ 2 0 0
−1/ 2 1 0
1 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1/ 3
2 / 3
−1/ 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
R3

=
1/ 2
1/ 2
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
C2
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Orthogonalization Convention 
 
Our convention is that adopted by Brookhaven, TOM/FRODO, O, X-PLOR and CCP4 (ncode=1) 
- unit cells are orthogonalized onto a Cartesian coordinate system defined by a, c*xa and c*.  
BEWARE:  other programs, such as TNT use other orthogonalization conventions.  
 
In matrix form, the general orthogonalization convention is given by: 
 

 

where Vol = abc (1 - cos2a - cos2b - cos2g + 2cosa cosb cosg)1/2 = sqrt(Det(G)).  
 
 
Specific forms of this matrix for monoclinic and trigonal cells are given: 
 
Monoclinic cells - orthogonal x and y superimpose with crystallographic a and b axes: 
 

 

Trigonal cells - orthogonal x and z superimpose with crystallographic a and c axes: 
 

 

 
 
 
 
 
 
 
 
 
 

X
Y
Z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
orthogonal

=

a bcosγ ccosβ

0 bsinγ c
cosα − cosβ cosγ

sinγ
⎧
⎨
⎩

⎫
⎬
⎭

0 0
Volume
absinγ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
fractional

a 0 ccosβ
0 b 0
0 0 csinβ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

a acosγ 0

0 asinγ 0

0 0 c

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Deorthogonalization:  Deorthogonalization matrices are the inverse (not transpose) of the 
orthogonalization matrix. For monoclinic and trigonal cells, these matrices take the form: 
 
Monoclinic: 
 

 

 
 
Trigonal:   

 

 
Example 7 
Intensity data from RC-cytochrome c cocrystals were indexed in two separate P21 cells:  a=77.5Å, 
b=82.3Å, c=130.0Å, b=101.6˚ (the “small” cell with one complex per asymmetric unit) and 
a=78.0, b=81.0, c=249.9, b=92.0˚ (the “large” cell with two complexes per asymmetric unit).  
Inspection of the native Patterson function of the large cell revealed a very large packing peak at 
(0.5, 0.06, 0.5) that relates two complexes in the asymmetric unit (ie - the two molecules in the 
asymmetric unit have the same orientation and differ only by a translation; at low resolution the 
crystal exhibits approximate B-center packing).  Molecular replacement solutions were derived for 
both cells, and it was found that the RCs in the two crystal forms were almost exactly related by a 
twofold rotation about the Z axis.  Are the RCs arranged similarly in the two crystal forms? 
 

 

1
a 0

−cosβ
asinβ

0 1
b 0

0 0
1

csinβ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
a

− cosγ
asinγ

≅ 0.57735
a

0

0
1

asinγ
≅ 1.15470

a
0

0 0
1
c

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

• •

••

•

•

• •
•

•
•

••
c

O

a,a'

c'
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The large cell may be transformed to the small cell through the following relationship: 
 

 

By appropriate transformation of the metric G tensor, the cell constants of the small cell are 
calculated to be a=78.0Å, b=81.0Å, c=129.2Å, b=105.6˚ which are in reasonable agreement with 
the reported values.  The determinant of the P matrix is 0.5, indicating that the small cell does have 
half the volume of the large cell.  The fractional coordinates are transformed by the relationship: 
 

 

 
 
Now, the PDB coordinates have been orthogonalized (designated by capital letters (XYZ)), and 
the relationship (given the rotation matrix R) between the MR solutions for the two crystal forms 
must take the orthogonalization convention into account. 
 

 

substituting the appropriate values for the cell constants and carrying out the matrix multiplication 
yields: 
 

a ' b ' c '( )
small cell

= a b c( )
large cell

1 0 −1/ 2
0 −1 0
0 0 −1/ 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

small cell

=
1 0 −1
0 −1 0
0 0 −2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

large cell

X '
Y '
Z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

small cell

= R
X
Y
Y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

large cell

1 / a ' −cosβ '
a 'sinβ '

0 1/ b ' 0

0 0
1

c 'sinβ '

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

X '
Y '
Z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1 0 −1
0 −1 0
0 0 −2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1/ a −cosβ
asinβ

0 1/ b 0

0 0
1

csinβ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

X
Y
Z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

X '
Y '
Z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a ' 0 c 'cosβ '
0 b ' 0
0 0 c 'sinβ '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 −1
0 −1 0
0 0 −2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1/ a −cosβ
asinβ

0 1/ b 0

0 0
1

csinβ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

X
Y
Z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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which is a twofold along X.  However, in each cell there are crystallographically related molecules 
related by a twofold screw axis along y.  If the transformation is calculated between the 21 screw 
related molecule in the large cell, and our original small cell molecule, then the transformation is: 
 

 

so that molecules in the two cells are related by a twofold rotation about the orthogonal Z axis.  
This makes it likely that the RCs are packed similarly in the two crystal forms, although we haven’t 
taken into account the translational component of the transformation.   
 

X '
Y '
Z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

small cell

=
1 0 0
0 −1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

X
Y
Y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

large cell

X '
Y '
Z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

small cell

=
1 0 0
0 −1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1 0 0
0 1 0
0 0 −1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

X
Y
Y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

large cell

=
−1 0 0
0 −1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

X
Y
Y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

large cell
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Distances: 
 
Distances between points can be calculated following orthogonalization of non-orthogonal 
coordinates if necessary; alternatively, distances can be calculated directly from fractional 
coordinates and the metric tensor G (real space) or G* (reciprocal space): 
 

 

 
The distance squared (d*2) of a reflection with indices hkl from the origin of reciprocal space may 
be similarly calculated: 
 

 

 
 
 

d 2 = dt ⋅d = x y z( )
fractional

a
b
c

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
a b c( )

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
fractional

= x y z( )G
x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

G =
a ⋅a a ⋅b a ⋅c
a ⋅b b ⋅b b ⋅c
a ⋅c b ⋅c c ⋅c

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

a2 abcosγ accosβ
abcosγ b2 bccosα
accosβ bccosα c2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

d 2 = x2a2 + y2b2 + z2c2 + 2yzbccosα + 2xzaccosβ + 2xyabcosγ
V 2 = det G( )
GG* = I

d*( )2
= 1
d

⎛
⎝⎜

⎞
⎠⎟

2

= h k l( )G*
h
k
l

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= h2a*2 + k 2b*2 + l2c*2 + 2hk cosγ * + 2hlcosβ * + 2klcosα *

= 2sinϑ
λ

⎛
⎝⎜

⎞
⎠⎟

2

   (Bragg's Law)
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Rotation Angles 
 
The basic rotation matrix can be illustrated for the case of a counterclockwise rotation about the z 
axis by the angle q.   
 

 
 
 

Rotation matrix about the z axis 
 

 

 
Rotation matrix about the y axis 
 

By appropriate sequences of rotations about specified axes, it is possible to derive expressions for 
different types of rotation matrices by multiplication of matrices of the type illustrated above.  
There are numerous conventions; the main angle types are Euler (q1, q2, q3) and spherical polar 
(often f, y, k).  The spherical polar angle convention used by XPLOR and in our group (at least 
traditionally) is given below; y is measured from the y axis and f is measured in the xz 
plane from the x axis:  
 
 

 

 
direction cosines in terms of (f,y) 
 
 
 
Using the convention that xrot =Ax, where A is the rotation matrix, then the rotation matrix can be 
written in terms of spherical polar angles by the sequence of operations that first orients the rotation 
axis along y, then rotates about this axis by k, and finally returns the rotation axis to the original 
direction: 
 

 
to give: 
 

x

y

θ (x,y,z)

(x',y',z)
x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

cosϑ −sinϑ 0
sinϑ cosϑ 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x '
y '
z '

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

cosϑ 0 sinϑ
0 1 0

−sinϑ 0 cosϑ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

l
m
n

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

cosϕ sinψ
cosψ

−sinϕ sinψ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Ry ϕ⎡⎣ ⎤⎦Rz −ψ⎡⎣ ⎤⎦Ry κ⎡⎣ ⎤⎦Rz ψ⎡⎣ ⎤⎦Ry −ϕ⎡⎣ ⎤⎦

x

y

z

ψ

φ
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Another useful form writes the rotation matrix in terms of the direction cosines (l,m,n) of the 
rotation axis and the rotation angle k: 
 

 

 
The trace of the rotation matrix (sum of the diagonal elements) can be seen in this formulation to 
equal 1 + 2 cosk (added 10/12/06). 
 
Another set of commonly used rotation angles are the Euler angles.  Again, there are many 
conventions, but a commonly used one (at least by X-PLOR and us!) is that (q1, q2, q3) correspond 
to rotations about the z, rotated x’’ and rotated z’ axes.  The rotation matrix in  terms of the Eulerian 
angles and the relationship between the unrotated x, y and z  axes and the rotated x’, y’, and z’ 
axes are depicted below (fixed (3,1) element on 10/11/06) 
 
 

 

cosκ + sin2ψ cos2ϕ 1− cosκ( ) sinψ cosψ cosϕ 1− cosκ( )
+sinψ sinϕ sinκ

−sin2ψ cosϕ sinϕ 1− cosκ( )
+cosψ sinκ

sinψ cosψ cosϕ 1− cosκ( )
−sinψ sinϕ sinκ

cosκ + cos2ψ 1− cosκ( ) −sinψ cosψ sinϕ 1− cosκ( )
−sinψ cosϕ sinκ

−sin2ψ cosϕ sinϕ 1− cosκ( )
−cosψ sinκ

−sinψ cosψ sinϕ 1− cosκ( )
+sinψ cosϕ sinκ

cosκ + sin2ψ sin2ϕ 1− cosκ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

l2 + m2 + n2( )cosκ lm 1− cosκ( )− nsinκ nl 1− cosκ( )+msinκ
lm 1− cosκ( )+ nsinκ m2 + l2 + n2( )cosκ mn 1− cosκ( )− l sinκ
nl 1− cosκ( )−msinκ mn 1− cosκ( )+ l sinκ n2 + l2 +m2( )cosκ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−sinϑ1 cosϑ2 sinϑ3
+cosϑ1 cosϑ3

cosϑ1 cosϑ2 sinϑ3
+sinϑ1 cosϑ3

sinϑ2 sinϑ3

−sinϑ1 cosϑ2 cosϑ3
−cosϑ1 sinϑ3

cosϑ1 cosϑ2 cosϑ3
−sinϑ1 sinϑ3

sinϑ2 cosϑ3

sinϑ1 sinϑ2 −cosϑ1 sinϑ2 cosϑ2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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CCP4 uses a different set of conventions; in this case, the Euler angle rotation matrix is the 
transpose of ours, so that our X-PLOR (q1, q2, q3) = CCP4 (-q3, -q2, -q1) =  (180-q3, q2, 180-q1) 
(probably).  In CCP4, the spherical polar angles are defined as f, w, k, where w is measured from 
the z axis (not y as in our convention) and f is measured in the xy plane from the x axis. 
 
 
 

 

 
direction cosines in terms of (f,w) 
 

  

 

 
Another Euler-type convention that is often used, particularly with Fast Rotation Functions, is 
designated abg, where the rotations are about axes in the order Z, new Y (not X!!) and new Z.   
 

x

y

z

x'

y'

z'

θ1

θ2

θ3

x"

θ1

θ2

θ3

x
y
z

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
≡

l
m
n

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

cosϕ sinω
sinϕ sinω
cosω

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x

ω

φ

y

z
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Useful matrix operations in Mathematica  
 
Definition of a matrix, bigmat, giving the list of elements row by row 
bigmat={{1,-1,0},{1,0,0},{0,0,1}} 
 
MatrixForm produces a nicely formatted matrix 
MatrixForm[bigmat] 
 
Inverse calculates the matrix inverse 
Inverse[bigmat] 
 
Eigensystem will calculate the eigenvalues, followed by the eigenvectors in the same order 
Eigensystem[bigmat] 
 
Eigenvalues[bigmat] 
Eigenvectors[bigmat] 
 
Transpose calculates the matrix transpose 
MatrixForm[Transpose[bigmat]] 
 
The product of two matrices is specified by the “.” (dot). 
MatrixForm[Inverse[bigmat].bigmat] 
 
Rotation matrix functions can also be defined: 
rotz[a_] := {{Cos[a],-Sin[a],0},{Sin[a],Cos[a],0},{0,0,1}} 
roty[b_] := {{Cos[b],0,Sin[b]},{0,1,0},{-Sin[b],0,Cos[b]}} 
rotx[g_] := {{1,0,0},{0,Cos[g],-Sin[g]},{0,Sin[g],Cos[g]}} 
 
 
Arctan[x,y] = tan-1 (y/x) 
Cross[x,y] = cross product of x and y 
Trace[mat] = trace of matrix 
 


